Published online by Cambridge University Press: 18 May 2009
In [7] the level, sublevel, and product level of finite dimensional central division algebras D over a field F were calculated when F is a local or global field. In Theorem 1.4 of this paper we calculate the same quantities if all finite extensions K of F satisfy ū(K) ≤2, where ū is the Hasse number of a field as defined in [2]. This occurs, for example, if F is an algebraic extension of the function field R(x) where R is a real closed field or hereditarily Euclidean field (see [4]).