Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T03:54:57.552Z Has data issue: false hasContentIssue false

KÄHLER SURFACES WITH QUASI CONSTANT HOLOMORPHIC CURVATURE

Published online by Cambridge University Press:  21 July 2015

WLODZIMIERZ JELONEK*
Affiliation:
Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Krakòw, Poland e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the paper we describe Kahler QCH surfaces. We prove that any Calabi type and orthotoric Kahler surfaces are QCH Kahler surfaces. We also classify locally homogeneous QCH surfaces.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2015 

References

REFERENCES

1.Bryant, R., Bochner-Kähler metrics, J. Amer. Math. Soc. 14 (2001), 623715.CrossRefGoogle Scholar
2.Apostolov, V., Armstrong, J. and Draghici, T., Local rigidity of certain classes Almost Kähler 4-manifolds, Ann. Glob. Anal. Geom. 21 (2002), 151176.Google Scholar
3.Apostolov, V., Calderbank, D. M. J. and Gauduchon, P., The geometry of weakly self-dual Kähler surfaces, Compos. Math. 135 (2003), 279322.CrossRefGoogle Scholar
4.Apostolov, V., Calderbank, D. M. J. and Gauduchon, P., Ambitoric geometry I: Einstein metrics and extremal ambiKähler structures, arXiv:1302.6975v1[mathDG]2013.Google Scholar
5.Apostolov, V. and Gauduchon, P., The Riemannian Goldberg-Sachs theorem, Internat. J. Math. 8 (4) (1997), 421439.Google Scholar
6.Besse, A. L., Einstein manifolds, Ergebnisse, ser. 3, vol. 10 (Springer-Verlag, Berlin-Heidelberg-New York, 1987).Google Scholar
7.Derdziński, A., Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compos. Math. 49 (1983), 405433.Google Scholar
8.Derdzinski, A., Examples of Kähler and Einstein self-dual metrics on complex plane (Seminar Arthur Besse 1978/79). Cedic/Fernand Nathan, Paris, 1981.Google Scholar
9.Ganchev, G. and Mihova, V., Kähler manifolds of quasi-constant holomorphic sectional curvatures, Cent. Eur. J. Math. 6 (1) (2008), 4375.CrossRefGoogle Scholar
10.Ganchev, G. and Mihova, V., Warped product Kähler manifolds and Bochner-Kähler metrics, J. Geom. Phys. 58 (2008), 803824.Google Scholar
11.Jelonek, W., Compact holomorphically pseudosymmetric Kähler manifolds, Coll. Math. 117 (2) (2009), 243249.CrossRefGoogle Scholar
12.Jelonek, W., Kähler manifolds with quasi-constant holomorphic curvature, Ann. Glob. Anal. Geom. 36 (2009), 143159.CrossRefGoogle Scholar
13.Jelonek, W., Holomorphically pseudosymmetric Kähler metrics on CPn, Coll. Math. 127 (1) (2012), 127131.CrossRefGoogle Scholar
14.Jensen, G. R., Homogeneous Einstein manifolds of dimension four, J. Diff. Geom. 3 (1969), 309349.Google Scholar
15.Kobayashi, S. and Nomizu, K., Foundations of differential geometry, vol. 2 (Interscience, New York, 1963).Google Scholar
16.Kowalski, O.Generalized symmetric spaces, Lecture Notes in Mathematics, vol. 805 (Springer, New York, 1980).Google Scholar
17.Olszak, Z., Bochner flat Kählerian manifolds with a certain condition on the Ricci tensor, Simon Stevin 63 (1989), 295303.Google Scholar