Published online by Cambridge University Press: 18 May 2009
The structure of semigroups whose subsemigroups form a chain under inclusion was determined by Tamura [9]. If we consider the analogous problem for inverse semigroups it is immediate that (since idempotents are singleton inverse subsemigroups) any inverse semigroup whose inverse subsemigroups form a chain is a group. We will therefore, continuing the approach of [5, 6], consider inverse semigroups whose full inverse subsemigroups form a chain: we call these inverse ▽-semigroups.