Published online by Cambridge University Press: 18 May 2009
The study of bounded distributive lattices endowed with an additional dual homomorphic operation began with a paper by J. Berman [3]. On the one hand, this class of algebras simultaneously abstracts de Morgan algebras and Stone algebras while, on the other hand, it has relevance to propositional logics lacking both the paradoxes of material implication and the law of double negation. Subsequently, these algebras were baptized distributive Ockham lattices and an order-topological duality theory for them was developed by A. Urquhart [13]. In an elegant paper [9], M. S. Goldberg extended this theory and, amongst other things, described the free algebras and the injective algebras in those subvarieties of the variety 0 of distributive Ockham algebras which are generated by a single finite subdirectly irreducible algebra. Recently, T. S. Blyth and J. C. Varlet [4] explicitly described the subdirectly irreducible algebras in a small subvariety MS of 0 while in [2] the order-topological results of Goldberg were applied to accomplish the same objective for a subvariety k1.1 of 0 which properly contains MS. The aim, here, is to describe explicitly the injective algebras in each of the subvarieties of the variety MS. The first step is to draw the Hasse diagram of the lattice AMS of subvarieties of MS. Next, the results of Goldberg are applied to describe the injectives in each of the join irreducible members of AMS. Finally, this information, in conjunction with universal algebraic results due to B. Davey and H. Werner [8], is applied to give an explicit description of the injectives in each of the join reducible members of AMS.