No CrossRef data available.
Article contents
A HYPONORMAL TOEPLITZ COMPLETION PROBLEM
Published online by Cambridge University Press: 25 February 2013
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper we consider the following ‘Toeplitz completion’ problem: Complete the unspecified analytic Toeplitz entries of the partial block Toeplitz matrix
$
\begin{linenomath}
A:=\begin{bmatrix} T_{\overline\psi_1}& ?\\[4pt]
\T_{\overline\psi_2} \end{bmatrix}
\end{linenomath}
$
to make A hyponormal, where ψi∈H∞ is a non-constant rational function for i=1,2.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2013
References
REFERENCES
1.Abrahamse, M. B., Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597–604.Google Scholar
2.Cowen, C., Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809–812.CrossRefGoogle Scholar
3.Curto, R. E., Hwang, I. S. and Lee, W. Y., Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230 (2012), 2094–2151.Google Scholar
4.Douglas, R. G., Banach algebra techniques in the theory of Toeplitz operators, CBMS 15 (Amer. Math. Soc., Providence, RI, 1973).CrossRefGoogle Scholar
5.Gu, C., Hendricks, J. and Rutherford, D., Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006), 95–111.Google Scholar
6.Gu, C. and Shapiro, J. E., Kernels of Hankel operators and hyponormality of Toeplitz operators, Math. Ann. 319 (2001), 553–572.Google Scholar
7.Hwang, I. S. and Lee, W. Y., Hyponormal Toeplitz operators with rational symbols, J. Operator Theory 56 (2006), 47–58.Google Scholar
8.Nakazi, T. and Takahashi, K., Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Am. Math. Soc. 338 (1993), 753–769.CrossRefGoogle Scholar
You have
Access