Article contents
GORENSTEIN AND Sr PATH IDEALS OF CYCLES
Published online by Cambridge University Press: 26 August 2014
Abstract
Let R = k[x1,…,xn], where k is a field. The path ideal (of length t ≥ 2) of a directed graph G is the monomial ideal, denoted by It(G), whose generators correspond to the directed paths of length t in G. Let Cn be an n-cycle. We show that R/It(Cn) is Sr if and only if it is Cohen-Macaulay or $\lceil \frac{n}{n-t-1}\rceil\geq r+3$. In addition, we prove that R/It(Cn) is Gorenstein if and only if n = t or 2t + 1. Also, we determine all ordinary and symbolic powers of It(Cn) which are Cohen-Macaulay. Finally, we prove that It(Cn) has a linear resolution if and only if t ≥ n − 2.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2014
References
REFERENCES
- 1
- Cited by