Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T01:47:03.452Z Has data issue: false hasContentIssue false

GENERALISED QUANTUM DETERMINANTAL RINGS ARE MAXIMAL ORDERS

Published online by Cambridge University Press:  04 August 2020

T. H. LENAGAN
Affiliation:
Maxwell Institute, School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK, e-mail: [email protected]
L. RIGAL
Affiliation:
Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse, France, e-mail: [email protected]

Abstract

Generalised quantum determinantal rings are the analogue in quantum matrices of Schubert varieties. Maximal orders are the noncommutative version of integrally closed rings. In this paper, we show that generalised quantum determinantal rings are maximal orders. The cornerstone of the proof is a description of generalised quantum determinantal rings, up to a localisation, as skew polynomial extensions.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruns, W. and Vetter, U., Determinantal rings , Lecture notes in Mathematics, vol. 1327 (Springer-Verlag, Berlin, 1988).Google Scholar
Goodearl, K. R. and Lenagan, T. H., Quantum determinantal ideals, Duke Math. J. 103 (2000), 165190.CrossRefGoogle Scholar
Goodearl, K. R. and Lenagan, T. H., Prime ideals invariant under winding automorphisms in quantum matrices, Int. J. Math. 13 (2002), 497532.CrossRefGoogle Scholar
Kelly, A. C., Lenagan, T. H. and Rigal, L., Ring theoretic properties of quantum grassmannians, J. Algebra Appl. 3 (2004), 930.CrossRefGoogle Scholar
Krause, G. R. and Lenagan, T. H., Growth of algebras and Gelfand–Kirillov dimension, Graduate Studies in Mathematics, vol. 22, Revised edition (American Mathematical Society, Providence, RI, 2000).Google Scholar
Lenagan, T. H. and Rigal, L., The maximal order property for quantum determinantal rings, Proc. Edin. Math. Soc. 46 (2003), 513529.CrossRefGoogle Scholar
Lenagan, T. H. and Rigal, L., Quantum graded algebras with a straightening law and the AS–Cohen–Macaulay property for quantum determinantal rings and quantum grassmannians, J. Algebra 301 (2006), 670702.CrossRefGoogle Scholar
Lenagan, T. H. and Rigal, L., Quantum analogues of Schubert varieties in the grassmannian, Glasgow Math. J. 50 (2008), 5570.CrossRefGoogle Scholar
Maury, G. and Raynaud, J., Ordres maximaux au sens de K. Asano , Lecture Notes in Mathematics, vol. 808 (Springer-Verlag, Berlin, 1980).Google Scholar
Parshall, B. and Wang, J.-P., Quantum linear groups, Mem. Amer. Math. Soc. 89(439) (1991), vi+157pp.Google Scholar