Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T17:33:25.014Z Has data issue: false hasContentIssue false

GAPS BETWEEN CONSECUTIVE UNTWISTING NUMBERS

Published online by Cambridge University Press:  03 February 2020

DUNCAN MCCOY*
Affiliation:
Département de mathématiques, Université du Québec à Montréal, Montréal QC H3C3P8, Canada e-mail: [email protected]

Abstract

For p ≥ 1, one can define a generalisation of the unknotting number tup called the pth untwisting number, which counts the number of null-homologous twists on at most 2p strands required to convert the knot to the unknot. We show that for any p ≥ 2 the difference between the consecutive untwisting numbers tup–1 and tup can be arbitrarily large. We also show that torus knots exhibit arbitrarily large gaps between tu1 and tu2.

Type
Research Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baader, S., Banfield, I. and Lewark, L., Untwisting 3-strand torus knots. arXiv:1909.01003 (2019).Google Scholar
Borodzik, M. and Friedl, S., On the algebraic unknotting number. Trans. London Math. Soc., 1(1) (2014), 5784.CrossRefGoogle Scholar
Borodzik, M. and Friedl, S.. The unknotting number and classical invariants, I. Algebr. Geom. Topol., 15(1) (2015), 85135.CrossRefGoogle Scholar
Peter, F., Miller, A. N. and Pinzon-Caicedo, J.. A note on the topological slice genus of satellite knots. arXiv:1908.03760 (2019).Google Scholar
Hom, J.. Bordered Heegaard Floer homology and the tau-invariant of cable knots. J. Topol., 7(2) (2014), 287326.Google Scholar
Ince, K.. The untwisting number of a knot. Pacific J. Math., 283(1) (2016), 139156.CrossRefGoogle Scholar
Ince, K.. Untwisting information from Heegaard Floer homology. Algebr. Geom. Topol., 17(4) (2017), 22832306.CrossRefGoogle Scholar
McCoy, D.. Null-homologous twisting and the algebraic genus. arXiv:1908.4043 (2019).Google Scholar
Ozsváth, P. and Szabó, Z.. Knot Floer homology and the four-ball genus. Geom. Topol., 7 (2003), 615639.CrossRefGoogle Scholar