Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T00:30:06.407Z Has data issue: false hasContentIssue false

Fourier-Stieltjes Transforms which vanish at infinity off certain sets

Published online by Cambridge University Press:  18 May 2009

Louis Pigno
Affiliation:
Kansas State University, Manhattan, Kansas 66506, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper G is a nondiscrete compact abelian group with character group Г and M(G) the usual convolution algebra of Borel measures on G. We designate the following subspaces of M(G) employing the customary notations: Ma(G) those measures which are absolutely continuous with respect to Haar measure; MS(G) the space of measures concentrated on sets of Haar measure zero and Md(G) the discrete measures.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1978

References

REFERENCES

1.Blei, R. C., A tensor approach to interpolation phenomena in discrete abelian groups, Proc. Amer. Math. Soc. 49 (1975), 175177.Google Scholar
2.Blei, R. C., On Fourier-Stieltjes transforms of discrete measures, Math. Scand. 35 (1974), 211214.CrossRefGoogle Scholar
3.Bonami, A., Etude des coefficients de Fourier des fonctions de LP(G), Ann. Inst. Fourier (Grenoble) 20 (1970), 335402.Google Scholar
4.de Leeuw, K. and Katznelson, Y., The two sides of a Fourier-Stieltjes transform and almost idempotent measures, Israel J. Math. 8 (1970), 213229.CrossRefGoogle Scholar
5.Dressier, R. E., Parker, W. and Pigno, L., Sidon sets and small p sets, Quart, J. Math. Oxford Ser. 2, 24 (1973), 7980.CrossRefGoogle Scholar
6.Dressier, R. E. and Pigno, L., On strong Riesz sets, Colloq. Math. 29 (1974), 157158.CrossRefGoogle Scholar
7.Dressier, R. E. and Pigno, L., Sets of uniform convergence and strong Riesz sets, Math. Ann. 211 (1974), 227231.CrossRefGoogle Scholar
8.Dressier, R. E. and Pigno, L., Some lacunary conditions for Fourier-Stieltjes transforms, Ark. Mat. 13 (1975), 7377.Google Scholar
9.Dressier, R. E. and Pigno, L., Une remarque sur les ensembles de Rosenthal et Riesz, C.R. Acad. Sci. Paris, 280 (1975), 280281.Google Scholar
10.Dressier, R. E. and Pigno, L., Modification sets and transforms of discrete measures, Ada. Sci. Math. (Szeged) 38 (1976), 1316.Google Scholar
11.Hartman, S. and Ryll-Nardzewski, C., Almost periodic extensions of functions, II, Colloq. Math. 15 (1966), 7986.Google Scholar
12.Helson, H., On a theorem of Szegö, Proc. Amer. Math. Soc. 6 (1955), 235242.Google Scholar
13.Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis, Vol. I (Springer Verlag, 1963).Google Scholar
14.Kahane, J.-P., Ensembles de Ryll-Nardjewski et ensembles de Helson, Colloq. Math. 15 (1966), 8792.Google Scholar
15.Kessler, I., Semi-idempotent measures on abelian groups, Bull. Amer. Math. Soc. 73 (1967), 258260.CrossRefGoogle Scholar
16.López, J. M. and Ross, K. A., Sidon Sets (Marcel Dekker, Inc., New York, 1975).Google Scholar
17.Meyer, Y., Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 8799.CrossRefGoogle Scholar
18.Pigno, L., A variant of the F. and M. Riesz theorem, J. London Math. Soc. (2), 9 (1974), 368370.Google Scholar
19.Pigno, L., Convolution products with small Fourier-Stieltjes transforms, Illinois J. Math. 19 (1975), 7778.CrossRefGoogle Scholar
20.Pigno, L., Integer-valued Fourier-Stieltjes transforms, Technical Report No. 53 Kansas State University (1976).Google Scholar
21.Pigno, L. and Saeki, S., Interpolation by transforms of discrete measures, Proc. Amer. Math.Soc. 52 (1975), 156158.Google Scholar
22.Pigno, L. and Saeki, S., Fourier-Stieltjes Transform which vanish at infinity, Math.Z. 141 (1975), 8391.CrossRefGoogle Scholar
23.Rajchman, A., Une classe de series trigonometriquesMath. Ann. 101 (1929), 686700.CrossRefGoogle Scholar
24.Rudin, W., Trigonometric series with gaps, J. Math, and Mech. 9 (1970), 203228.Google Scholar