Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T23:43:20.503Z Has data issue: false hasContentIssue false

Finite abelian actions on surfaces

Published online by Cambridge University Press:  18 May 2009

S. A. Jassim
Affiliation:
Department Of Computer ScienceUniversity of Buckingham, U.K.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finite abelian group of rank m, M an oriented compact connected surface, and F(G, M) the set of all orientation preserving free G-actions on M. Two actions φ1, φ2εF(G, M) are equivalent if there exists an orientation preserving homeomorphism h of M such that

hφ1(f) for all f ε G.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1993

References

REFERENCES

1.Artin, E., Geometric algebra (Interscience, 1957).Google Scholar
2.Edmonds, A. L., Surface symmetry I, Michigan Math. J. 29 (1982), 171183.CrossRefGoogle Scholar
3.Edmonds, A. L., Surface symmetry II, Michigan Math. J. 30 (1983), 143154.CrossRefGoogle Scholar
4.Jassim, S. A., Finite abelian surface coverings, Glasgow Math. J. 25 (1984), 207218.CrossRefGoogle Scholar
5.Jassim, S. A., Classifications of covering spaces (Ph.D. thesis, University College of Swansea, Wales, 1980).Google Scholar
6.Lickorish, W. B. R., A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769778.CrossRefGoogle Scholar
7.Livingston, C., Inequivalent, bordant group actions on a surface, Math. Proc. Cambridge Philos. Soc. 99 (1986), 233238.CrossRefGoogle Scholar
8.Smith, P. A., Abelian actions on 2-manifolds, Michigan Math. J. 14 (1967), 257275.CrossRefGoogle Scholar
9.Yokoyama, K., Classification of periodic maps on compact surfaces: I, Tokyo J. Math. 6 (1983), 7594.CrossRefGoogle Scholar
10.Yokoyama, K., Classification of periodic maps on compact surfaces: II, Tokyo J. Math. 7 (1984), 249285.CrossRefGoogle Scholar
11.Zimmermann, B., Surfaces and the second homology of a group, Monotsh. Math. 104 (1987), 247253.CrossRefGoogle Scholar