Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T02:47:40.034Z Has data issue: false hasContentIssue false

The Farey density of norm subgroups of global fields (II)

Published online by Cambridge University Press:  18 May 2009

S. D. Cohen
Affiliation:
Department of Mathematics, University of Glasgow
R. W. K. Odoni
Affiliation:
Department of MathematicsUniversity of Exeter
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we shall derive for function fields in one variable over finite constant fields results analogous to [1], where algebraic number fields were considered. The ground field P will be the set of all rational functions in a given transcendent X, with coefficients in k = GF(q), q = pr, p a prime; thus P = k(X).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1977

References

REFERENCES

1.Odoni, R. W. K., The Farey density of norm subgroups of global fields—I, Mathematika 20 (1973), 155169.CrossRefGoogle Scholar
2.Schmidt, F. K., Die Theorie der Klassenkörper…, Sitzungsberichte der phys. med. Soc. zu Erlangen 62 (1930), 267284.Google Scholar
3.Deuring, M., Lectures on the theory of algebraic functions of one variable, Lecture Notes in Mathematics No. 314 (Springer-Verlag, 1973).CrossRefGoogle Scholar
4.Deuring, M., Über den Tschebotareffschen Dichtigkeitssatz, Math. Ann. 110 (1935), 414415.CrossRefGoogle Scholar
5.Cohen, S. D., The distribution of polynomials over finite fields, Acta Arithmetica 17 (1970), 255271.CrossRefGoogle Scholar
6.Fried, M., On Hilbert's Irreducibility Theorem, Number Theory 6 (1974), 211231.CrossRefGoogle Scholar