Published online by Cambridge University Press: 18 May 2009
Let E[τ] be a locally convex Hausdorff topological vector space. An extended decomposition of E[τ] is a family {Ea}α∈A of closed subspaces of E such that, for each x in E and each α in A, there exists a unique point xα in Eα, with Here convergence will have the following meaning. Let Ф denote the set of all finite subsets of A. The sum is said to be convergent to x if for each neighbourhood U of 0 in E, there is an element φ0 of Ф such that , for all φ in Ф containing φ0. It follows that is Cauchy if and only if, for each neighbourhood U of 0 in E, there is an element φ0 of Ф such that , for all φ in Ф disjoint from φ0.