Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T01:39:29.824Z Has data issue: false hasContentIssue false

EVALUATION OF CONVOLUTION SUMS $$\sum\limits_{l + km = n} {\sigma (l)\sigma (m)} $$ AND $$\sum\limits_{al + bm = n} {\sigma (l)\sigma (m)} $$ FOR k = a · b = 21, 33, AND 35

Published online by Cambridge University Press:  16 July 2021

K. PUSHPA
Affiliation:
Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru 570 006, India e-mails: [email protected]; [email protected]
K. R. VASUKI
Affiliation:
Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru 570 006, India e-mails: [email protected]; [email protected]

Abstract

The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$, for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaca, A., Alaca, Ş. and Williams, K. S., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 12m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{3l + 4m = n}}\sigma (l)\sigma (m)$$, Adv. Theor. Appl. Math. 1(1) (2006), 2748.Google Scholar
Alaca, A., Alaca, Ş. and Williams, K. S., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 18m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{2l + 9m = n}}\sigma (l)\sigma (m)$$, Int. Math. Forum 2(1–4) (2007), 4568.Google Scholar
Alaca, A., Alaca, Ş., and Williams, K. S., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 24m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{3l + 8m = n}}\sigma (l)\sigma (m)$$, Math. J. Okayama Univ. 49 (2007), 93–111.Google Scholar
Alaca, A., Alaca, Ş. and Williams, K. S., The convolution sum $$\mathop \sum \nolimits_{ _{m < n/16}}\sigma (m)\sigma (n - 16m)$$, Canad. Math. Bull. 51(1) (2008), 3–14.CrossRefGoogle Scholar
Alaca, Ş. and Kesicioğlu, Y., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 27m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{l + 32m = n}}\sigma (l)\sigma (m)$$, Int. J. Number Theory 12(1) (2016), 113.CrossRefGoogle Scholar
Alaca, Ş. and Williams, K. S., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 6m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{2l + 3m = n}}\sigma (l)\sigma (m)$$, J. Number Theory 124(2) (2007), 491–510.CrossRefGoogle Scholar
Andrews, G. E. and Berndt, B. C., Ramanujan’s lost notebook, part I (Springer, New York, 2005).CrossRefGoogle Scholar
Anusha, T., Bhuvan, E. N., Cooper, S. and Vasuki, K. R., Elliptic integrals and Ramanujan-type series for $$1/\pi $$ associated with $${\Gamma _0}(N)$$, where N is a product of two small primes, J. Math. Anal. Appl. 472(2) (2019), 15511570.CrossRefGoogle Scholar
Berndt, B. C., Ramanujan’s notebooks: part II (Springer, New York, 1989).CrossRefGoogle Scholar
Berndt, B. C., Ramanujan’s notebooks: part III (Springer, New York, 1991).CrossRefGoogle Scholar
Berndt, B. C., Ramanujan’s notebooks: part IV (Springer, New York, 1994).CrossRefGoogle Scholar
Berndt, B. C., Chan, H. H., Sohn, J. and Son, S. H., Eisenstein series in Ramanujan’s lost notebook, Ramanujan J. 4(1) (2000), 81114.CrossRefGoogle Scholar
Besge, M., Extrait d’une lettre de M Besge á M Liouville, J. Math. Pure Appl. 7 (1862), 256.Google Scholar
Bhuvan, E. N.. A classical approach to Ramanujan’s type Eisenstein series and incomplete elliptic integrals, Doctorial Thesis (submitted to University of Mysore, Mysuru, India, 2018).Google Scholar
Chan, H. H. and Cooper, S., Powers of theta functions, Pacific J. Math. 235(1) (2008), 114.CrossRefGoogle Scholar
Cooper, S., Ramanujan’s theta functions (Springer International Publishing, AG, 2017).CrossRefGoogle Scholar
Cooper, S. and Toh, P. C., Quintic and septic Eisenstein series, Ramanujan J. 19(2) (2009), 163181.CrossRefGoogle Scholar
Cooper, S. and Ye, D., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 20m = n}}\sigma (l)\sigma (m)$$, $$\mathop \sum \nolimits_{ _{4l + 5m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{2l + 5m = n}}\sigma (l)\sigma (m)$$, Int. J. Number Theory 10(6) (2014), 13851394.CrossRefGoogle Scholar
Glaisher, J. W. L., On the square of the series in which the coefficients are the sums of the divisors of the exponents, Messenger Math. 14 (1862), 156163.Google Scholar
Glaisher, J. W. L., Mathematical papers (W. Metcalfe and Son, Cambridge, 1885), 1883–1885.Google Scholar
Huard, J. G., Ou, Z. M., Spearman, B. K. and Williams, K. S., Elementary evaluation of certain convolution sums involving divisor functions, in Number theory for the millennium, II (Urbana, IL, 2000) (A K Peters, Natick, MA, 2002), 229–274.Google Scholar
Lemire, M. and Williams, K. S., Evaluation of two convolution sums involving the sum of divisors function, Bull. Austral. Math. Soc. 73(1)(2006), 107115.CrossRefGoogle Scholar
Lomadze, G. A., Representation of numbers by sums of the quadratic forms $$x_1^2 + {x_1}{x_2} + x_2^2$$, Acta Arith. 54(1) (1989), 9–36.Google Scholar
Miyake, T., Modular forms (Springer, New York, 1989).CrossRefGoogle Scholar
Ntienjem, E., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{\alpha l + \beta m = n}}\sigma (l)\sigma (m)$$ where $$(\alpha ,\beta )$$ is in {(1, 14), (2, 7), (1, 26), (2, 13), (1, 28), (4, 7), (1, 30), (2, 15), (3, 10), (5, 6)}, Master’s Thesis (School of Mathematics and Statistics, Carleton University, 2015).Google Scholar
Ntienjem, E., Evaluation of convolution sums involving the sum of divisors function for levels 48 and 64, Integers 17 Paper No. A49, 22 (2017).Google Scholar
Ntienjem, E., Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52, Open Math. 15(1) (2017), 446458.CrossRefGoogle Scholar
Ntienjem, E., Elementary evaluation of convolution sums involving the divisor function for a class of levels, North-W. Eur. J. Math. 5 (2019), 101165.Google Scholar
Ramakrishnan, B. and Sahu, B., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 15m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{3l + 5m = n}}\sigma (l)\sigma (m)$$ and an application, Int. J. Number Theory 9(3) (2013), 799809.CrossRefGoogle Scholar
Ramanujan, S., Notebooks (2 volumes) (Tata Institute of Fundamental Research, Bombay, 1957).Google Scholar
Ramanujan, S., The lost notebook and other unpublished papers (Narosa Publishing House, New Delhi, 1988).Google Scholar
Ramanujan, S., On certain arithmetical functions [Trans. Cambridge Philos. Soc. 22(9) (1916), 159–184], in Collected papers of Srinivasa Ramanujan (AMS Chelsea Publishing, Providence, RI, 2000), 136–162.Google Scholar
Royer, E., Evaluating convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory 3(2) (2007), 231261.CrossRefGoogle Scholar
Vasuki, K. R. and Veeresha, R. G., Ramanujan’s Eisenstein series of level 7 and 14, J. Number Theory 159 (2016), 5975.CrossRefGoogle Scholar
Williams, K. S., The convolution sum $$\mathop \sum \nolimits_{ _{m < n/9}}\sigma (m)\sigma (n - 9m)$$, Int. J. Number Theory 1(2) (2005), 193205.CrossRefGoogle Scholar
Williams, K. S., The convolution sum $$\mathop \sum \nolimits_{ _{m < n/8}}\sigma (m)\sigma (n - 8m)$$, Pacific J. Math. 228(2) (2006), 387396.CrossRefGoogle Scholar
Xia, E. X. W., Tian, X. L., and Yao, O. X. M., Evaluation of the convolution sum $$\mathop \sum \nolimits_{ _{i + 25j = n}}\sigma (i)\sigma (j)$$, Int. J. Number Theory 10(6) (2014), 14211430.CrossRefGoogle Scholar
Ye, D., Evaluation of the convolution sums $$\mathop \sum \nolimits_{ _{l + 36m = n}}\sigma (l)\sigma (m)$$ and $$\mathop \sum \nolimits_{ _{4l + 9m = n}}\sigma (l)\sigma (m)$$, Int. J. Number Theory 11(1) (2015), 171183.CrossRefGoogle Scholar