No CrossRef data available.
Article contents
EMBEDDING IN A FINITE 2-GENERATOR SEMIGROUP
Part of:
Semigroups
Published online by Cambridge University Press: 10 June 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We augment the body of existing results on embedding finite semigroups of a certain type into 2-generator finite semigroups of the same type. The approach adopted applies to finite semigroups the idempotents of which form a band and also to finite orthodox semigroups.
MSC classification
Primary:
20M19: Orthodox semigroups
Secondary:
20M20: Semigroups of transformations, etc.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2016
References
REFERENCES
1.
Benzaken, C. and Mayr, H. C., Noti on de demi-bande: Demi-bandes de type deux, (French) Semigroup Forum
10
(2) (1975), 115–128.Google Scholar
2.
Evans, T., Embedding theorems for multiplicative systems and projective geometries, Proc. American Math. Soc
3 (1952), 614–620.CrossRefGoogle Scholar
3.
Hall, T. E., Inverse and regular semigroups and amalgamation: a brief survey, in Proc. of the Symposium on regular semigroups, Northern Illinois University, (1979), 49–79.Google Scholar
6.
Hunter, R. P., On Certain Two Generator Monoids, Semigroup Forum, Vol. 47 (1993), 96–100.Google Scholar
7.
Margolis, S., Maximal pseudovarieties of finite monoids and semigroups Russian Mathematics (Izvestiya VUZ, Matematika), 1995, 39:1.Google Scholar
8.
McAlister, D. B., Stephen, J. B. and Vernitski, A., Embedding In
in a 2-generator inverse subsemigroup of I
n+2
, Proceedings of the Edinburgh Mathematical Society (2002) 45, 1–4.Google Scholar
9.
Mian, A. M. and Chowla, S. D., On the B
2-sequences of Sidon, Proc. Nat. Acad. Sci. India
A14 (1944), 3–4.Google Scholar
10.
Neumann, B. H., Embedding theorems for semigroups, J. London Math. Soc.
35 (1960), (184–192).Google Scholar
11.
Sierpinski, W., Sur les suites infinies de fonctions dêfinies dans les ensembles quelconques, Fund. Math.
24 (1935), 209–212.CrossRefGoogle Scholar