Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:33:00.187Z Has data issue: false hasContentIssue false

The distribution of cube-full numbers

Published online by Cambridge University Press:  18 May 2009

P. Shiu
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An elementary derivation of the asymptotic formula for the number of cube-full numbers up to x is given. This derivation is used, together with an estimation of a three dimensional exponential sum, to establish the asymptotic formula for the number of cube-full numbers in the short interval x < n < x⅔+θ where 140/1123 < θ < 1/3.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1991

References

REFERENCES

1.Erdoõs, P. and Sekeres, G., Über die Anzahl der Abelschen Gruppen gegebeber Ordnung and über ein verwandtes zahlentheoretisches Problem, Ada Sci. Math. (Szeged), 7 (1935), 95102.Google Scholar
2.Ivic, A. and Shiu, P., The distribution of powerful integers, Illinois J. Math. 26 (1982), 576690.Google Scholar
3.Chaohua, Jia, On square-full members in short intervals, (Chinese) Ada Math. Sinica 30 (1987), 614621.Google Scholar
4.Krätzel, E., Zweifache Exponentialsummen und dreidiemnsionale Gitterpunktproblem in Elementary and analytic theory of numbers, Warsaw, (1982) Banach Center Publ. 17, 337369 (PWN Warsaw, 1985).Google Scholar
5.Landau, E., Über die Anzahl der Gitterpunkte in gewissen Bereichen (II), Nachr. Ges. Wiss. Göttingen (1915), 209243.Google Scholar
6.Richert, H.-E., Über die Anzahl Abelscher Gruppen gegebener Ordnung (I), Math. Z. 56 (1952), 2132.Google Scholar
7.Roth, K. F., On the gaps between squarefree numbers, J. London Math. Soc. 26 (1951), 263268.Google Scholar
8.Schmidt, P. G., Zur Anzahl quadratvollen Zahlen in kurzen Intervallen, Acta Arith. 46 (1986), 159164.Google Scholar
9.Shiu, P., On the number of squarefull integers between successive squares, Mathematika 27 (1980), 171178.CrossRefGoogle Scholar
10.Shiu, P., On squarefull integers in a short interval, Glasgow Math. J. 25 (1984), 127134.Google Scholar