Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-03T20:23:31.561Z Has data issue: false hasContentIssue false

Diagrams associated with subgroups of Fuchsian groups

Published online by Cambridge University Press:  18 May 2009

W. W. Stothers
Affiliation:
University of Glasgow, Glasgow, G12 8QW
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The use of graphs in the study of groups is well-established. In this paper, we wish to indicate how certain graph-like objects may be used in a similar way. A diagram is a pseudograph which may have some free edges, i.e. edges with just one end.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1979

References

REFERENCES

1.Dey, I. M. S., Schreier systems in free products, Proc. Glasgow Math. Assoc. 7 (1965), 6179.CrossRefGoogle Scholar
2.Hararay, F., Graph theory (Addison-Wesley, 1969).CrossRefGoogle Scholar
3.Higgins, P. J., Notes on categories and groupoids, Mathematical Studies 32 (Van Nostrand Reinhold, 1971).Google Scholar
4.Imrich, W., Subgroup theorems and graphs, Lecture Notes in Mathematics 622 (Springer-Verlag, 1977).Google Scholar
5.Lehner, J., Discontinuous groups and automorphic functions (Amer. Math. Soc. 1964).CrossRefGoogle Scholar
6.Lyndon, R., Two notes on Rankin's book on the modular group, J. Austral. Math. Soc. 16 (1973), 454457.CrossRefGoogle Scholar
7.Millington, M. H., Subgroups of the classical modular group, J. London Math. Soc. (2) 1 (1970), 351357.Google Scholar
8.Singerman, D., Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319323.CrossRefGoogle Scholar
9.Stothers, W. W., Free subgroups of the free product of cyclic groups, Math. Comput. 32 (1978), 12741280.CrossRefGoogle Scholar
10.Stothers, W. W., Subgroups of the (2,3,7)-triangle group, Manuscripta Math. 20 (1977), 323334.CrossRefGoogle Scholar
11.Stothers, W. W., Subgroups of infinite index in the modular group, Glasgow Math. J. 19 (1978), 3343.CrossRefGoogle Scholar
12.Tretkoff, C., Non-parabolic subgroups of the modular group, Glasgow Math. J. 16 (1975), 91102.CrossRefGoogle Scholar
13.White, A. T., Graphs, groups and surfaces (North-Holland, 1973).Google Scholar
14.Wohlfahrt, K., An extension of F. Klein's level concept, Illinois J. Math. 8 (1964), 529535.CrossRefGoogle Scholar
15.Wohlfahrt, K., Über einen Satz von Dey und die Modulgruppe, Arch. Math. (Basel) 29 (1977), 455457.CrossRefGoogle Scholar