Published online by Cambridge University Press: 18 May 2009
It is well known that the lattice Λ(S) of congruences on a regular semigroup S contains certain fundamental congruences. For example there is always a minimum band congruence β, which Spitznagel has used in his study of the lattice of congruences on a band of groups [16]. Of key importance to his investigation is the fact that β separates congruences on a band of groups in the sense that two congruences are the same if they have the same meet and join with β. This result enabled him to characterize θ-modular bands of groups as precisely those bands of groups for which ρ⃗(ρ∨β, ρ∧β)is an embedding of Λ(S) into a product of sublattices.