Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T07:52:12.729Z Has data issue: false hasContentIssue false

COEFFICIENTS OF THE PROBABILISTIC FUNCTION OF A MONOLITHIC GROUP*

Published online by Cambridge University Press:  01 January 2008

PAZ JIMÉNEZ–SERAL*
Affiliation:
Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We relate the coefficients of the probabilistic zeta function of a finite monolithic group to those of an almost simple group.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2008

References

REFERENCES

1.Ballester-Bolinches, A. and Ezquerro, L. M., Classes of finite groups (Springer-Verlag, 2006).Google Scholar
2.Boston, N., A probabilistic generalization of the Riemann zeta functions, Analytic number theory I (1996), 155162.CrossRefGoogle Scholar
3.Brown, K. S., The coset poset and probabilistic zeta function of a finite group, J. Algebra 225 (2000), 9891012.CrossRefGoogle Scholar
4.Detomi, E. and Lucchini, A., Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra 265 (2003), 651668.CrossRefGoogle Scholar
5.Gaschütz, W., Die, EulerscheFunktion endlicher ausflösbarer Gruppen, Illinois J. Math. 3 (1959), 469476.CrossRefGoogle Scholar
6.Gross, F. and Kovács, L. G., On normal subgroups which are direct products, J. Algebra 90 (1984), 133168.CrossRefGoogle Scholar
7.Hall, P., The, Eulerianfunctions of a group, Quart. J. Math. Oxford 7 (1936), 134151.CrossRefGoogle Scholar
8.Kovács, L. G., Maximal subgroups in composite finite groups, J. Algebra 99 (1986), 114131.CrossRefGoogle Scholar
9.Mann, A., Positively finitely generated groups, Forum Math 8 (4) (1996), 429459.CrossRefGoogle Scholar