Article contents
Co-Cohen-Macaulay Artinian modules over commutative rings
Published online by Cambridge University Press: 18 May 2009
Extract
In [7], Z. Tang and H. Zakeri introduced the concept of co-Cohen-Macaulay Artinian module over a quasi-local commutative ring R (with identity): a non-zero Artinian R-module A is said to be a co-Cohen-Macaulay module if and only if codepth A = dim A, where codepth A is the length of a maximalA-cosequence and dimA is the Krull dimension of A as defined by R. N. Roberts in [2]. Tang and Zakeriobtained several properties of co-Cohen-Macaulay Artinian R-modules, including a characterization of such modules by means of the modules of generalized fractions introduced by Zakeri and the present second author in [6]; this characterization is explained as follows.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1996
References
REFERENCES
- 4
- Cited by