Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T17:47:00.206Z Has data issue: false hasContentIssue false

CLASSIFICATION OF POLARIZED SYMPLECTIC AUTOMORPHISMS OF FANO VARIETIES OF CUBIC FOURFOLDS

Published online by Cambridge University Press:  21 July 2015

LIE FU*
Affiliation:
Département de Mathématiques et Applications, École Normale Supérieure, 45 Rue d'Ulm, 75230 Paris Cedex 05, France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We classify the polarized symplectic automorphisms of Fano varieties of smooth cubic fourfolds (equipped with the Plücker polarization) and study the fixed loci.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2015 

References

REFERENCES

1.Beauville, A., Some remarks on Kähler manifolds with c_1 = 0, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39 (Birkhäuser Boston, Boston, MA, 1983), 126. MR728605 (86c:32031).Google Scholar
2.Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom. 18 (4) (1983), 755–782 (1984). MR 730926 (86c:32030).CrossRefGoogle Scholar
3.Beauville, A., Antisymplectic involutions of holomorphic symplectic manifolds, J. Topol. 4 (2) (2011), 300304. MR 2805992 (2012e:53083).CrossRefGoogle Scholar
4.Beauville, A. and Donagi, R., La variété des droites d'une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (14) (1985), 703706. MR 818549 (87c:14047)Google Scholar
5.Boissière, S., Automorphismes naturels de l'espace de Douady de points sur une surface, Canad. J. Math. 64 (1) (2012), 323. MR 2932167CrossRefGoogle Scholar
6.Boissière, S., Nieper-Wißkirchen, M. and Sarti, A., Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties, J. Math. Pures Appl. 95 (5) (2011), 553563. MR 2786223 (2012g:14070).CrossRefGoogle Scholar
7.Boissière, S. and Sarti, A., A note on automorphisms and birational transformations of holomorphic symplectic manifolds, Proc. Amer. Math. Soc. 140 (12) (2012), 40534062. MR 2957195CrossRefGoogle Scholar
8.Camere, C., Symplectic involutions of holomorphic symplectic four-folds, Bull. Lond. Math. Soc. 44 (4) (2012), 687702. MR 2967237.CrossRefGoogle Scholar
9.Charles, F., A remark on the Torelli theorem for cubic fourfolds, preprint, arXiv:1209.4509.Google Scholar
10.Donovan, P., The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France 97 (1969), 257273. MR 0263834 (41 #8433).CrossRefGoogle Scholar
11.Fu, L., On the action of symplectic automorphisms on the CH_0-groups of some hyper-Kähler fourfolds, Mathematische Zeitschrift, DOI: 10.1007/s00209-015-1424-9. (2015).CrossRefGoogle Scholar
12.González-Aguilera, V. and Liendo, A., Automorphisms of prime order of smooth cubic n-folds, Arch. Math. (Basel) 97 (1) (2011), 2537. MR 2820585 (2012g:14071).CrossRefGoogle Scholar
13.Kawatani, K., On the birational geometry for irreducible symplectic 4-folds related to the Fano schemes of lines, preprint, arXiv:0906.0654.Google Scholar
14.Kontogeorgis, A., Automorphisms of Fermat-like varieties, Manuscr. Math. 107 (2) (2002), 187205. MR 1894739 (2003a:14043).CrossRefGoogle Scholar
15.Mongardi, G., Automorphisms of hyperkähler manifolds, Ph.D. thesis (University of RomaTRE, 2013).Google Scholar
16.Mongardi, G., On symplectic automorphisms of hyper-Kähler fourfolds of K3[2] type, Michigan Math. J. 62 (3) (2013), 537550. MR 3102529.CrossRefGoogle Scholar
17.Namikawa, Y., Deformation theory of singular symplectic n-folds, Math. Ann. 319 (3) (2001), 597623. MR 1819886 (2002b:32025).CrossRefGoogle Scholar
18.Nikulin, V. V., Finite groups of automorphisms of Kählerian K3 surfaces, Uspehi Mat. Nauk. 31 (2(188)) (1976), 223224. MR 0409904.Google Scholar
19.Shioda, T., Arithmetic and geometry of Fermat curves, Algebraic Geometry Seminar (Singapore, 1987), (World Sci. Publishing, Singapore, 1988), 95102. MR 966448 (90a:11037).Google Scholar
20.Voisin, C., Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, vol. 77 (Cambridge University Press, Cambridge, 2003), Translated from the French by Leila Schneps. MR 1997577 (2005c:32024b).CrossRefGoogle Scholar