Published online by Cambridge University Press: 18 May 2009
In [1] it was shown that for a compact normal operator on a Hilbert space the numerical range was the convex hull of the point spectrum. Here it is shown that the same holds for a semi-normal operator whose point spectrum satisfies a density condition (Theorem 1). In Theorem 2 a similar condition is shown to imply that the numerical range of a semi-normal operator is closed. Some examples are given to indicate that the condition in Theorem 1 cannot be relaxed too much.