We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This paper concerns the study of some bifurcation properties for the following class of Choquard-type equations:
(P)
$$\left\{ {\begin{array}{*{20}{l}}
{ - \Delta u = \lambda f(x)\left[ {u + \left( {{I_\alpha }*f( \cdot )H(u)} \right)h(u)} \right],{\rm{ in }} \ {{\mathbb{R}}^3},}\\
{{{\lim }_{|x| \to \infty }}u(x) = 0,\quad u(x) > 0,\quad x \in {{\mathbb{R}}^3},\quad u \in {D^{1,2}}({{\mathbb{R}}^3}),}
\end{array}} \right.$$
where ${I_\alpha }(x) = 1/|x{|^\alpha },\,\alpha \in (0,3),\,\lambda > 0,\,f:{{\mathbb{R}}^3} \to {\mathbb{R}}$ is a positive continuous function and h : ${\mathbb{R}} \to {\mathbb{R}}$ is a bounded Hölder continuous function. The main tools used are Leray–Schauder degree theory and a global bifurcation result due to Rabinowitz.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Alves, C. O., Figueiredo, G. M. and Yang, M., Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field, Asymptot. Anal.96(2), 135–159 (2016).CrossRefGoogle Scholar
2
Alves, C. O., Nóbrega, A. B. and Yang, M., Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differ. Eq.55(3), 48 (2016).10.1007/s00526-016-0984-9CrossRefGoogle Scholar
3
Alves, C. O., de Lima, R. N. and Souto, M. A. S., Existence of a solution for a non-local problem in ℝN via bifurcation theory, Proc. Edin. Math. Soc.61, 825–845 (2018).CrossRefGoogle Scholar
4
Alves, C. O. and Souto, M. A. S., Existence of solutions for a class of elliptic equations in ℝN with vanishing potentials, J. Differ. Equ.252, 5555–5568 (2012).CrossRefGoogle Scholar
5
Alves, C. O. and Yang, J., Existence and regularity of solutions for a Choquard equation with zero mass, To appear in Milan J. Math.Google Scholar
6
Efinger, H. J., On the theory of certain nonlinear Schrödinger equations with nonlocal interaction, Nuovo Cimento B80(2), 260–278 (1984).CrossRefGoogle Scholar
7
Fröhlich, H., Theory of electrical breakdown in ionic crystal, Proc. R. Soc. Ser. A160, 230–241 (1937).Google Scholar
8
Fröhlich, H., Electrons in lattice fields, Adv. Phys.3(11) (1954).CrossRefGoogle Scholar
9
Genev, H. and Venkov, G., Soliton and blow-up solutions to the time-dependent, Discrete Contin. Dyn. Syst. Ser. S5(5), 903–923 (2012).Google Scholar
10
Ghergu, M. and Taliaferro, S. D., Pointwise bounds and blow-up for Choquard–Pekar inequalities at an isolated singularity, J. Differ. Equ.261(1), 189–217 (2016).CrossRefGoogle Scholar
11
Küpper, T., Zhang, Z. and Xia, H., Multiple positive solutions and bifurcation for an equation related to Choquard’s equation, Proc. Edin. Math. Soc.46, 597–607 (2003).CrossRefGoogle Scholar
12
Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard nonlinear equation, Stud. Appl. Math.57(2), 93–105 (1976/77).CrossRefGoogle Scholar
13
Lieb, E. and Loss, M., Analysis, Gradute Studies in Mathematics (AMS, Providence, Rhode Island, 2001).CrossRefGoogle Scholar
14
Ma, L. and Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal.195(2), 455–467 (2010).CrossRefGoogle Scholar
15
Mercuri, C., Moroz, V. and Van Schaftingen, J., Groundstates and radial solutions to nonlinear Schrodinger–Poisson–Slater equations at the critical frequency, Calc. Var. Partial Differ. Equ.55, 146 (2016). https://doi.org/10.1007/s00526-016-1079-3CrossRefGoogle Scholar
16
Moroz, V. and Van Schaftingen, J., Groundstates of nonlinear Choquard equations:existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265, 153–184 (2013).CrossRefGoogle Scholar
17
Moroz, V. and Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc.367, 6557–6579 (2015).CrossRefGoogle Scholar
18
Moroz, V. and Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theory Appl.19, 773–813 (2017).CrossRefGoogle Scholar
19
Moroz, V. and Van Schaftingen, J., Groundstates of nonlinear Choquard equation: Hardy–Littlewood–Sobolev critical exponent, To appear in Commun. Contemp. Math. arXiv:1403.7414v1Google Scholar
20
Moroz, I. M., Penrose, R. and Tod, P., Spherically-symmetric solution of the Schrödinger-Newton equation, Classical Quantum Gravity15, 2733–2742 (1998).10.1088/0264-9381/15/9/019CrossRefGoogle Scholar
21
Pekar, S., Untersuchung über die Elektronentheorie der Kristalle (Akademie Verlag, Berlin, 1954), p. 2.Google Scholar
22
Rabinowitz, P., Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7, 487–513 (1971).10.1016/0022-1236(71)90030-9CrossRefGoogle Scholar
23
Struwe, M., Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems (Springer, Berlin, 1990).CrossRefGoogle Scholar
24
Stuart, C. A., Bifurcation for variational problems when the linearisation has no eigenvalues, J. Funct. Anal.38(2), 169–187 (1980).CrossRefGoogle Scholar
25
Sun, X. and Zhang, Y., Multi-peak solution for nonlinear magnetic Choquard type equation, J. Math. Phys.55(3), 031508 (2014).CrossRefGoogle Scholar
26
Yang, M. and Wei, Y., Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl.403(2), 680–694 (2013).CrossRefGoogle Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
ALVES, CLAUDIANOR O.
DE LIMA, ROMILDO N.
and
NÓBREGA, ALÂNNIO B.
2020.
BIFURCATION PROPERTIES FOR A CLASS OF CHOQUARD EQUATION IN WHOLE ℝ3 - ERRATUM.
Glasgow Mathematical Journal,
Vol. 62,
Issue. 3,
p.
745.