Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T02:10:15.587Z Has data issue: false hasContentIssue false

ADHM CONSTRUCTION OF PERVERSE INSTANTON SHEAVES

Published online by Cambridge University Press:  18 December 2014

ABDELMOUBINE AMAR HENNI
Affiliation:
Universidade Federal de Santa Catarina (UFSC), Departamento de Matemática, Florianópolis-SC, Brazil e-mail: [email protected]
MARCOS JARDIM
Affiliation:
IMECC - UNICAMP, Departamento de Matemática, Caixa Postal 6065, 13083-970 Campinas-SP, Brazil e-mail: [email protected]
RENATO VIDAL MARTINS
Affiliation:
ICEx - UFMG, Departamento de Matemática, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte MG, Brazil e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a construction of framed torsion free instanton sheaves on a projective variety containing a fixed line which further generalises the one on projective spaces. This is done by generalising the so called ADHM variety. We show that the moduli space of such objects is a quasi projective variety, which is fine in the case of projective spaces. We also give an ADHM categorical description of perverse instanton sheaves in the general case, along with a hypercohomological characterisation of these sheaves in the particular case of projective spaces.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2014 

References

REFERENCES

1.Ancona, V. and Ottaviani, G., Stability of special instanton bundles on $\mathbb{P}$2n+1 Trans. Am. Math. Soc. 341 (1994), 677693.Google Scholar
2.Atiyah, M., Drinfeld, V., Hitchin, N. and Manin, Yu., Construction of instantons, Phys. Lett. 65A (1978), 185187.Google Scholar
3.Barth, W. and Hulek, K., Monads and moduli of vector bundles Manuscr. Math. 25 (1978), 323347.Google Scholar
4.Ben-Zvi, D. and Nevins, T., Perverse bundles and Calogero-Moser spaces Compos. Math. 144 (2008), 14031428.CrossRefGoogle Scholar
5.Braverman, A., Finkelberg, M. and Gaitsgory, D., Uhlenbeck spaces via affine Lie algebras, The unity of mathematics, Prog. Math. 244 (2006), 17135.CrossRefGoogle Scholar
6.Coandă, I., Tikhomirov, A. and Trautmann, G., Irreducibility and smoothness of the moduli space of mathematical 5-instantons over $\mathbb{P}$3, Int. J. Math. 14 (2003), 145.Google Scholar
7.Costa, L. and Miró-Roig, R. M., Monads and instanton bundles on smooth hyperquadrics Math. Nachr. 282 (2009), 169179.CrossRefGoogle Scholar
8.Costa, L. and Ottaviani, G., Nondegenerate multidimensional matrices and instanton bundles Trans. Am. Math. Soc. 355 (2002), 4955.Google Scholar
9.Diaconescu, D.-E., Moduli of ADHM sheaves and local Donaldson-Thomas theory, Preprint math/0801.0820.Google Scholar
10.Donaldson, S., Instantons and geometric invariant theory Commun. Math. Phys. 93 (1984), 453460.Google Scholar
11.Floystad, G., Monads on projective spaces Commun. Algebra 28 (2000), 55035516.CrossRefGoogle Scholar
12.Frenkel, I. B. and Jardim, M., Complex ADHM equations, and sheaves on $\mathbb{P}$3 J. Algebra 319 (2008), 29132937.Google Scholar
13.Gelfand, Yu. Manin, Methods of homological algebra.Google Scholar
14.Godement, R., Topologie algébrique et théorie des faisceaux (Hermann, Paris, 1958).Google Scholar
15.Gothen, P. B. and King, A. D., Homological algebra of twisted quiver bundles J. London. Math. Soc. 71 (2005), 8599.CrossRefGoogle Scholar
16.Grifiths, P. and Harris, J., Principles of algebraic geometry (New York, Wiley-Interscience, 1979).Google Scholar
17.Grothendieck, A., Sur quelques points d'algbre homologique, Tôhoku. Math. J. I, t. IX (1956), 119–221.Google Scholar
18.Grothendieck, A., Eléments de géométrie algébrique III, 1, Publ. Math. IHES no 11 (1961), 5–165.Google Scholar
19.Happel, D., Reiten, I. and Smalo, S., Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc. 120 (1996).Google Scholar
20.Hauzer, M. and Langer, A., Moduli spaces of framed perverse instanton sheaves on $\mathbb{P}$3 Glasgow Math. J. 53 (2011), 5196.CrossRefGoogle Scholar
21.Hartshorne, R., Algebraic geometry (Springer-Verlag, GTM, 52).Google Scholar
22.Hartshorne, R., Residues and duality, LNM 20 (Springer, 1966).CrossRefGoogle Scholar
23.Henni, A. A., Monads for torsion-free sheaves on multi-blow-ups of the projective plane, Internat. J. Math. 25 (2014), 1450008, 42 pp.Google Scholar
24.Hilton, P. J. and Stammbach, U., A course in homological algebra, 2nd ed. Graduate Texts in Mathematics, vol. 4 (Springer-Verlag, New York, 1997).Google Scholar
25.Jardim, M., Instanton sheaves on complex projective spaces Collec. Math. 57 (2006), 6991.Google Scholar
26.Jardim, M., Atiyah–Drinfeld–Hitchin–Manin construction of framed instanton sheaves C. R. Acad. Sci. Paris, Ser. I 346 (2008), 427430.CrossRefGoogle Scholar
27.Jardim, M., Moduli spaces of framed instanton sheaves on projective spaces, Preprint arXiv:0810.2550v2.Google Scholar
28.Jardim, M. and Martins, R. V., Linear and Steiner bundles on projective varieties Commun. Algebra 38 (2010), 22492270.Google Scholar
29.Jardim, M. and Martins, R. V., The ADHM variety and perverse coherent sheaves J. Geom. Phys. 61 (2011), 22192232.Google Scholar
30.Kashiwara, M., t-structures on the derived categories of holonomic $\mathcal{D}$-modules. and coherent $\mathcal{O}$-modules Moscow Math. J. 4 (2004), 847868.CrossRefGoogle Scholar
31.Le Potier, J., Fibré stable de rang 2 sur $\mathbb{P}$2($\mathbb{C}$), Math. Ann. 241 (1979), 217256.CrossRefGoogle Scholar
32.Mamone Capria, M. and Salamon, S. M., Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517530.CrossRefGoogle Scholar
33.Maruyama, M., Instantons anxd parabolic sheaves, in Geometry and analysis (Bombay, 1992) (Tata Inst. Fund. Res., Bombay, 1995), 245–267.Google Scholar
34.Mumford, D., Geometric invariant theory, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band, vol. 34 (Springer-Verlag, Berlin-New York, 1965).Google Scholar
35.Nakajima, H., Lectures on Hilbert schemes of points on surfaces (American Mathematical Society, Providence, 1999)Google Scholar
36.Newstead, P., Lectures on introduction to moduli problems and orbit spaces (Springer-Verlag, Berlin, 1978).Google Scholar
37.Okonek, C. and Spindler, H., Mathematical instanton bundles on $\mathbb{P}$2n+1 J. Reine Agnew. Math. 364 (1986), 3550.Google Scholar
38.Okonek, C., Schneider, M. and Spindler, H., Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3 (Birkhauser, Boston, 1980).Google Scholar
39.Spindler, H. and Trautmann, G., Special instanton bundles on P2N+1, their geometry and their moduli Math. Ann. 286 (1990), 559592.Google Scholar