No CrossRef data available.
Article contents
Dehn functions of mapping tori of right-angled Artin groups
Published online by Cambridge University Press: 11 January 2024
Abstract
The algebraic mapping torus $M_{\Phi }$ of a group
$G$ with an automorphism
$\Phi$ is the HNN-extension of
$G$ in which conjugation by the stable letter performs
$\Phi$. We classify the Dehn functions of
$M_{\Phi }$ in terms of
$\Phi$ for a number of right-angled Artin groups (RAAGs)
$G$, including all
$3$-generator RAAGs and
$F_k \times F_l$ for all
$k,l \geq 2$.
MSC classification
Primary:
20F65: Geometric group theory
Secondary:
20F36: Braid groups; Artin groups
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust
References
Alonso, J. M., Inégalités isopérimétriques et quasi-isométries, C. R. Acad. Sci. Paris Sér. I Math. 311(12) (1990), 761–764.Google Scholar
Bestvina, M., Feighn, M. and Handel, M., The Tits alternative for
${\rm Out}(F_n)$
. I. Dynamics of exponentially-growing automorphisms, Ann. Math. (2) 151(2) (2000), 517–623.CrossRefGoogle Scholar

Bestvina, M. and Handel, M., Train tracks and automorphisms of free groups, Ann. Math. (2) 135(1) (1992), 135–151.CrossRefGoogle Scholar
Bogopolski, O., Martino, A. and Ventura, E., The automorphism group of a free-by-cyclic group in rank 2, Commun. Algebra 35(5) (2007), 1675–1690.CrossRefGoogle Scholar
Bowditch, B. H., Relatively hyperbolic groups, Int. J. Algebra Comput. 22(3) (2012), 1250016,66.CrossRefGoogle Scholar
Brady, N. and Soroko, I., Dehn functions of subgroups of right-angled Artin groups, Geom. Dedicata 200 (2019), 197–239.CrossRefGoogle Scholar
Bridson, M. R. and Gersten, S. M., The optimal isoperimetric inequality for torus bundles over the circle, Q. J. Math. Oxford Ser. 2(185) (1996), 47–23.Google Scholar
Bridson, M. R. and Groves, D., The quadratic isoperimetric inequality for mapping tori of free group automorphisms, Mem. Am. Math. Soc. 203(955) (2010), xii+152.Google Scholar
Bridson, M. R. and Haefliger, A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319 (Springer, Berlin, 1999).CrossRefGoogle Scholar
Bridson, M. R. and Pittet, C., Isoperimetric inequalities for the fundamental groups of torus bundles over the circle, Geom. Dedicata 49(2) (1994), 203–219.CrossRefGoogle Scholar
Brinkmann, P., Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10(5) (2000), 1071–1089.CrossRefGoogle Scholar
Button, J. O. and Kropholler, R. P., Nonhyperbolic free-by-cyclic and one-relator groups, N. Y. J. Math. 22 (2016), 755–774.Google Scholar
Diestel, R., Graph theory, Graduate Texts in Mathematics, vol. 173, 3rd edition (Springer, Berlin, 2005).Google Scholar
Farb, B., Relatively hyperbolic groups, Geom. Funct. Anal. 8(5) (1998), 810–840.CrossRefGoogle Scholar
Gersten, S. M., Isoperimetric and isodiametric functions of finite presentations, in Geometric group theory, Vol. 1 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 181 (Cambridge University Press, Cambridge, 1993), 79–96.CrossRefGoogle Scholar
Gersten, S. M. and Riley, T. R., Some duality conjectures for finite graphs and their group theoretic consequences, Proc. Edinb. Math. Soc. 2(2) (2005), 48–421.Google Scholar
Hermiller, S. and Meier, J., Algorithms and geometry for graph products of groups, J. Algebra 171(1) (1995), 230–257.CrossRefGoogle Scholar
Laurence, M. R., A generating set for the automorphism group of a graph group, J. London Math. Soc. (2) 52(2) (1995), 318–334.CrossRefGoogle Scholar
Levitt, G., Counting growth types of automorphisms of free groups, Geom. Funct. Anal. 19(4) (2009), 1119–1146.CrossRefGoogle Scholar
Lyndon, R. C. and Schupp, P. E., Combinatorial group theory, Classics in Mathematics (Springer, Berlin, 2001), Reprint of the 1977 edition.CrossRefGoogle Scholar
Osin, D. V., Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc. 179(843) (2006), vi+100.Google Scholar
Papasoglu, P., On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality, J. Differ. Geom. 44(4) (1996), 789–806.CrossRefGoogle Scholar
Piggott, A., Detecting the growth of free group automorphisms by their action on the homology of subgroups of finite index. Available at https://arxiv.org/abs/math/0409319v1
Google Scholar
Servatius, H., Automorphisms of graph groups, J. Algebra 126(1) (1989), 34–60.CrossRefGoogle Scholar
VanWyk, L., Graph groups are biautomatic, J. Pure Appl. Algebra 94(3) (1994), 341–352.CrossRefGoogle Scholar