Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T01:42:38.006Z Has data issue: false hasContentIssue false

Characterization of totally geodesic foliations with integrable and parallelizable normal bundle

Published online by Cambridge University Press:  10 May 2022

Euripedes C. da Silva*
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Av. Parque Central, 1315, Maracanaú, Ceará, CEP 61939-140, Brazil
David C. Souza
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Av. Parque Central, 1315, Maracanaú, Ceará, CEP 61939-140, Brazil
Fernando P.P. Reis
Affiliation:
Universidade Federal do Espríto Santo, Centro Universitário Norte do Espríto Santo, Rodovia Governador Mário Covas, Km 60, 1315, São Mateus, ES, CEP 29932-540, Brazil
*
*Corresponding author. E-mail: [email protected]

Abstract

In this work, we study foliations of arbitrary codimension $\mathfrak{F}$ with integrable normal bundles on complete Riemannian manifolds. We obtain a necessary and sufficient condition for $\mathfrak{F}$ to be totally geodesic. For this, we introduce a special number $\mathfrak{G}_{\mathfrak{F}}^{\alpha}$ that measures when the foliation ceases to be totally geodesic. Furthermore, applying some maximum principle we deduce geometric properties for $\mathfrak{F}$ . We conclude with a geometrical version of Novikov’s theorem (Trans. Moscow Math. Soc. (1965), 268–304), for Riemannian compact manifolds of arbitrary dimension.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Applications of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions, Tohoku Math. J. (2) 25 (4) (1973), 425444.CrossRefGoogle Scholar
Almeida, S. C., Brito, F. G. B. and Colares, A. G., Umbilic foliations with integrable normal bundle, Bull. Sci. Math. 141 (2017), 573583.Google Scholar
Barbosa, J. L. M., Kenmotsu, K. and Oshikiri, G., Foliations by hypersurfaces with constant mean curvature, Math. Z. 207 (1991), 97108.Google Scholar
Brito, F. G. B. and Walczak, P. G., Totally geodesic foliations with integrable normal bundles, Bol. Soc. Bras. Mat. 17 (1986), 4146.Google Scholar
Calabi, E., An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1957), 4556.Google Scholar
Camargo, F., Caminha, A. and Sousa, P., Complete foliations of space forms by hypersurfaces, Bull. Braz. Math. Soc. 41 (2010), 339353.Google Scholar
Chaves, R. M. d. S. B. and da Silva, E. C., Foliations by spacelike hypersurfaces on Lorentz manifolds, Results Math. 75, 36 (2020).CrossRefGoogle Scholar
Ferus, D., Totally geodesic foliations, Math. Ann. 188 (4) (1970), 313316.Google Scholar
Ghys, E., Classification des feuilletages totalement géodésiques de codimension un, Comment. Math. Helv. 58 (1983), 543572.CrossRefGoogle Scholar
Gomes, A. O., The mean curvature of a transversely orientable foliation, Results Math. 46 (2004), 3136.CrossRefGoogle Scholar
Gomes, A. O. and Silva, E. C., Orthogonal foliations on riemannian manifolds, arXiv:Math/1711.05690.Google Scholar
Johnson, D. L. and Whitt, L., Totally geodesic foliations, J. Differ. Geometry 15 (1980), 225235.Google Scholar
Moerdijk, I. and Mrcun, J., Introduction to Foliations and Lie Groupoids, (Cambridge University Press, Cambridge, 2010).Google Scholar
Montiel, S., Stable constant mean curvature hypersufaces in some Riemannian manifolds, Comment. Math. Helv. 73 (1998), 584602.CrossRefGoogle Scholar
Montiel, S., Uniqueness of spacelike hypersurfaces of constant mean curvature in foliation spacetimes, Math. Ann. 314 (1999), 529553.CrossRefGoogle Scholar
Novikov, S. P., Topology of foliations, Trans. Moscow Math. Soc. (1965), 268304.Google Scholar
Oshikiri, G., A remark on minimal foliations, Tohoku Math. J. 33 (1981), 133137.Google Scholar
Rovenski, V., Totally geodesic foliations close to Riemannian foliations, J. Math. Sci. 72 (4) (1994), 114118.Google Scholar
Rovenski, V., The integral of mixed scalar curvature along a leaf of foliation, Diff. Geom. Appl. 26 (1996), 357365.Google Scholar
Silva, E. C., Folheações ortogonais em variedades Riemannianas, PhD Thesis (University of São Paulo, São Paulo, 2017).Google Scholar
Walczak, P., An integral formula for a riemannian manifolds with two orthogonal complementary distributions, Colloquium Mathematicum 58 (1990), 243252 Google Scholar
Yau, S. T., Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math. 28 (1975), 201228.Google Scholar