Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T20:35:43.918Z Has data issue: false hasContentIssue false

Viscosity estimates of salt in the Hormuz and Namakdan salt diapirs, Persian Gulf

Published online by Cambridge University Press:  15 January 2010

SOUMYAJIT MUKHERJEE*
Affiliation:
Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai-400 076, Powai, India
CHRISTOPHER J. TALBOT
Affiliation:
Hans Ramberg Tectonic Laboratory, Uppsala University, 752 36 Uppsala, Sweden
HEMIN A. KOYI
Affiliation:
Hans Ramberg Tectonic Laboratory, Uppsala University, 752 36 Uppsala, Sweden
*
Author for correspondence: [email protected]

Abstract

The parabolic surface profiles of the Hormuz and Namakdan salt diapirs in the Persian Gulf suggest that they have been extruding with Newtonian viscous rheologies for the last 104 years. We derive velocity profiles for these diapirs, neglecting gravitational spreading and erosion/dissolution while assuming incompressible Newtonian rheology of the salt. Fitting known rates of extrusion at specific points in its elliptical cross-section, the dynamic viscosity of the salt of the Hormuz diapir is found to range between 1018 and 1021 Pa s. Approximating its sub-circular cross-section to a perfect circle, the range of viscosity of the salt of the Namakdan diapir is obtained as 1017–1021 Pa s. These calculated viscosities fall within the range for naturally flowing salts elsewhere and for other salt diapirs but are broader than those for salts with Newtonian rheology deforming at room temperatures. The salts of the Hormuz and Namakdan diapirs are expected to exhibit a broader range of grain size, which matches the limited existing data.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahroudi, A. & Talbot, C. J. 2003. The configuration of the basement beneath the Zagros basin. Journal of Petroleum Geology 26, 257–82.Google Scholar
Billings, M. P. 2001. Structural Geology, 3rd ed. New Delhi: Prentice Hall of India.Google Scholar
Bosák, P., Jaros, J., Spudil, J., Sulovsky, P. & Vaclavak, V. 1998. Salt plugs in the eastern Zagros, Iran: regional geological reconnaissance. GeoLines (Praha) 7, 3174.Google Scholar
Bruthans, J., Asadi, N., Filippi, M., Vilhelm, Z. & Zare, M. 2008. A study of erosion rates on salt diapir surfaces in the Zagros Mountains, SE Iran. Environmental Geology 53, 1079–89.Google Scholar
Bruthans, J., Filippi, M., Asadi, N., Zare, M. & Churáčková, Z. 2009. Surficial deposits on salt diapirs (Zagros Mountains and Persian Gulf Platform, Iran): Characterization, evolution, erosion and the influence on landscape morphology. Geomorphology 107, 195209.Google Scholar
Bruthans, J., Filippi, M., Geršl, M., Zare, M., Melková, J., Pazdur, A. & Bosák, P. 2006. Holocene marine terraces on two salt diapirs in the Persian Gulf, Iran: age, depositional history and uplift rates. Journal of Quaternary Science 21, 843–57.CrossRefGoogle Scholar
Carter, N. L, Horseman, S. T., Russell, J. E. & Handin, J. 1993. Rheology of rocksalt. Journal of Structural Geology 15, 1257–71.Google Scholar
Chapman, R. E. 1981. Geology and Water, An Introduction to Fluid Mechanics for Geologists. Volume 1. The Hague: Martinus Nijhoff, 183 pp.Google Scholar
Chemia, Z. & Koyi, H. A. 2008. The control of salt supply on entrainment of an anhydrite layer within a salt diapir. Journal of Structural Geology 30, 11921200.Google Scholar
Chemia, Z., Koyi, H. A. & Schmeling, H. 2008. Numerical modeling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International 172, 798816.Google Scholar
Chemia, Z., Schmeling, H. & Koyi, H. 2009. The effect of salt viscosity on future evolution of the Gorleben salt diapir, Germany. Tectonophysics 473, 446–56. DOI: 10.1016/j.tecto.2009.03.027.Google Scholar
Critescu, N. D. & Hunsche, U. 1998. Time effects in Rock mechanics. Series: Materials, modelling and Computation. Chichester: John Wiley and Sons, 342 pp.Google Scholar
Davies, G. F. 1999. Dynamic Earth, Plumes and Mantle Convection. Cambridge University Press, 263 pp.Google Scholar
Davis, G. H. & Reynolds, S. J. 1996. Structural Geology of Rocks and Regions, 2nd edn. New York: John Wiley, 652 pp.Google Scholar
Davison, I., Insley, M., Harper, M., Weston, P., Blundell, D., McClay, K. & Quallington, A. 1993. Physical modeling of overburden deformation around salt diapirs. Tectonophysics 228, 255–74.Google Scholar
De Böckh, H., Lees, G. M. & Richardson, F. D. S. 1929. Contribution to the stratigraphy and tectonics of the Iranian ranges. In The structure of Asia (ed. Gregory, J. W.), pp. 58176. London: Methuen.Google Scholar
Dennis, J. G. 1987. Structural Geology: An Introduction. Dubuque: Wm. C. Brown Publishers, 464 pp.Google Scholar
Gemmer, L., Beaumont, C. & Ings, S. J. 2005. Dynamic modelling of passive margin salt tectonics: effects of water loading, sediment properties and sedimentation. Basin Research 17, 383402.Google Scholar
Gemmer, L., Ings, S. J., Medvedev, S. & Beaumont, C. 2004. Salt tectonics driven by differential sediment loading: stability analysis and finite element experiments. Basin Research 16, 199218.Google Scholar
Harrison, J. V. 1930. The geology of some salt-plugs in Laristan, southern Persia. Quarterly Journal of the Geological Society of London 86, 463522.Google Scholar
Harrison, G. V. 1931. Salt Domes in Persia. Journal of Institution of Petroleum Technology 17, 300–20.Google Scholar
Heard, H. C. 1972. Steady-state flow in polycrystalline halite at pressure of 2 kilobars. In Flow and Fracture of Rocks (eds Heard, H. C., Borg, I. Y., Carter, N. L. & Raleigh, C. B.), pp. 191209. Griggs Volume. American Geophysical Union Monograph no. 16.Google Scholar
Hudec, M. R. & Jackson, M. P. A. 2007. Terra Infirma: Understanding Salt Tectonics. Earth-Science Reviews 82, 128.Google Scholar
Hunsche, U. & Hampel, A. 1999. Rock salt-mechanical properties of the host rock material for a radioactive waste repository. Engineering Geology 52, 271–91.Google Scholar
Ings, S. J. & Shimeld, J. W. 2006. A new conceptual model for the structural evbolution of a regional salt detachment on the northern Scotian margin, offshore eastern Canada. AAPG Bulletin 90, 1407–23.Google Scholar
Jackson, M. P. A. & Talbot, C. J. 1986. External shapes, strain rates and dynamics of salt structures. Geological Society of America Bulletin 97, 305–25.Google Scholar
Jackson, M. P. A. & Talbot, C. J. 1989. Anatomy of mashroom-shaped diapirs. Journal of Structural Geology 11, 211–30.Google Scholar
Jackson, M. P. A., Vendeville, B. C. & Schultz-Ela, D. D. 1994. Structural Dynamics of Salt Systems. Annual Review of Earth and Planetary Sciences 22, 93117.Google Scholar
Jahani, S., Callot, J. P., de Lamotte, D. F., Letouzey, J. & Leturmy, P. 2007. The Salt Diapirs of the Eastern Fars Province (Zagros, Iran): A Brief Outline of their Past and Present. In Thrust Belts and Foreland Basins from Fold Kinematics to Hydrocarbon Systems (eds Lacombe, O., Lavé, J., Roure, F. & Vergés, J.), pp. 289308. Springer Verlag.Google Scholar
Jenyon, M. K. 1986. Salt Tectonics. London: Elsevier Applied Science Publishers, 192 pp.Google Scholar
Kent, P. E. 1958. Recent studies of South Persian salt plugs. American Association of Petroleum Geologists Bulletin 42, 2951–79.Google Scholar
Koop, W. J. & Stonely, R. 1982. Subsidence history of the Middle East Zagros basin, Permian to recent. In Philosophical Transactions of the Royal Society, London A305, 149–68.Google Scholar
Koyi, H. 1991 a. Mushroom diapirs penetrating overburdens with high effective viscosities. Geology 19, 1229–32.Google Scholar
Koyi, H. A. 1991 b. Gravity overturn, extension and basement fault activation. Journal of Petroleum Geology 14, 117–42.Google Scholar
Koyi, H. A. 1997. Analogue modelling: from a qualitative to a quantitative technique, a historical outline. Journal of Petroleum Geology 20, 223–38.Google Scholar
Koyi, H. A. 2001. Modelling the influence of sinking anhydrite blocks on salt diapirs targeted for hazardous waste disposal. Geology 29, 387–90.2.0.CO;2>CrossRefGoogle Scholar
Koyi, H. A., Ghassemi, A., Hessami, Kh. & Dietl, C. 2008. Modelling the role of strike-slip faults in triggering Salt Diapirs in the Zagros fold-thrust belt. Journal of the Geological Society, London 165, 1031–44.Google Scholar
Koyi, H. A., Jenyon, M. K. & Petersen, K. 1993. The effect of basement faulting on diapirism. Journal of Petroleum Geology 16, 285312.CrossRefGoogle Scholar
Lin, S.-C. & van Keken, P. E. 2006. Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer. Geochemistry, Geophysics, Geosystems 7, Q02006. DOI:10.1029/2005GC001071.Google Scholar
Massimi, P., Quarteroni, A., Saleri, F. & Scrofany, G. 2007. Modelling of salt tectonics. Computational Methods in Applied Mechanics and Engineering 197, 281–93.CrossRefGoogle Scholar
McQuarrie, N. 2004. Crustal scale geometry of the Zagros fold-thrust belt, Iran. Journal of Structural Geology 26, 519–35.Google Scholar
Mizutani, S. 1984. Salt Domes in the Gulf Coast. In Geological Structures (eds Uemura, T. & Mizutani, M.), pp. 106–33. Chichester: John Wiley & Sons.Google Scholar
Mouthereau, F., Lacombe, O. & Meyer, B. 2006. The Zagros folded belt (Fars, Iran): constraints from topography and critical wedge modeling. Geophysical Journal International 165, 336–56.Google Scholar
Odé, H. 1968. Review of Mechanical Properties of Salt Relating to Salt-Dome Genesis. In Diapirism and Diapirs (eds Braunstein, J. & O'Brien, G. D.), pp. 53–8. 50th Annual Meeting of the Association in New Orleans, Louisiana, April 26–29, 1965. Memoir 8. The American Association of Petroleum Geology.Google Scholar
Papanastasiou, C. T., Georgiou, G. C. & Alexandrou, A. N. 2000. Viscous Fuid Flow. Florida: CRC Press, 253 pp.Google Scholar
Poliakov, A. B., Podladchikov, Yu. Yu., Dawson, E. Ch. & Talbot, C. J. 1996. Salt diapirism with simultaneous brittle faulting and viscous flow. In Salt Tectonics (eds Alsop, G. I., Blundell, D. J. & Davison, I.), pp. 291302. Geological Society of London, Special Publication no. 100.Google Scholar
Price, N. J. & Cosgrove, J. W. 1990. Analysis of Geological Structures. Cambridge University Press, 520 pp.Google Scholar
Ramberg, H. 1981. Gravity, deformation and the Earth’s crust in theory, experiments and geological applications, 2nd ed. London: Academic Press.Google Scholar
Reyss, J. L., Pirazzoli, P. A., Haghipor, A., Hatte, C. & Fontugne, M. 1998. Quaternary marine terraces and tectonic uplift rates in the south coast of Iran. In Coastal tectonics (eds Stewart, I. S. & Vita-Finzi, C.), pp. 225–37. Geological Society of London, Special Publication no. 146.Google Scholar
Rischbieter, F. 1988. Stress distribution and flow field in salt domes. Proceedings of the Second Conference. In The Mechanical Behaviour of Salt (eds Hardy, H. R. & Langer, M.), pp. 615–24. Federal Institute for Geosciences and National Resources, Hanover, September 24–28, 1984. Clausthal-Zellerfeld: Trans Tech Publication.Google Scholar
Sans, M. & Koyi, H. A. 2001. Modelling the role of erosion in diapir development in contractional settings. In Tectonic Modelling: A Volume in Honor of Hans Ramberg (eds Koyi, H. A. & Mancktelow, N.), pp. 111–22. Geological Society of America, Memoir no. 193.Google Scholar
Schubert, G., Turcotte, D. L. & Olson, P. 2001. Mantle Convection in the Earth and Planets. Part I. Cambridge University Press, 498 pp.Google Scholar
Schultz-Ela, D. D. 2003. Origin of drag folds bordering salt diapirs. AAPG Bulletin 87, 757–80.Google Scholar
Schultz-Ela, D. D. & Walsh, P. 2002. Modeling of grabens extending above evaporites in Canyonlands National Park, Utah. Journal of Structural Geology 24, 247–75.Google Scholar
Talbot, C. J. 1998. Extrusions of Hormoz salt in Iran. In Lyell: the Past is the Key to the Present (eds Blundell, D. J. & Scott, A. C.), pp. 315–34. Geological Society of London, Special Publication no. 143.Google Scholar
Talbot, C. J. 2002. Salt extrusion-rates in the Zagros. In Basic and Applied Salt Mechanics (eds Cristescu, N. D., Hardy, H. R. & Simionescu, R. O.), pp. 35–9. Proceedings of the Fifth Conference on Mechanical Behaviour of Salt, Mecasalt V, Bucharest, Romania, 9–11 August 1999. A. A. Balkema Publishers.Google Scholar
Talbot, C. J. & Aftabi, P. 2004. Geology and models of salt extrusion at Qum Kuh, central Iran. Journal of the Geological Society, London 161, 321–34.Google Scholar
Talbot, C. J. & Aftabi, P. & Chemia, Z. 2009. Potash in a salt mushroom at Hormoz island, Hormoz strait, Iran. Ore Geology Reviews 35, 317–32.Google Scholar
Talbot, C. J., Farhadi, R. & Aftabi, P. 2009. Potash in salt extruded at Sar Pohl diapir, southern Iran. Ore Geology Reviews 35, 352–6.CrossRefGoogle Scholar
Talbot, C. J. & Jarvis, R. J. 1984. Age, budget and dynamics of an active salt extrusion in Iran. Journal of Structural Geology 6, 521–33.CrossRefGoogle Scholar
Talbot, C. J., Medvedev, S., Alavi, M., Shahrivar, H. & Heidari, E. 2000. Salt extrusion rates at Kuh-e-Jahani, Iran: June 1994 to November 1997. In Lyell: the Past is the Key to the Present (eds Blundell, D. J. & Scott, A. C.), pp. 93110. Geological Society of London, Special Publication no. 143.Google Scholar
Turcotte, D. L. & Schubert, G. 2002. Geodynamics, 2nd ed. Cambridge University Press.Google Scholar
van Keken, P. E., Spiers, C. J., van den Berg, A. P. & Muyzert, E. J. 1993. The effective viscosity of rock salt: implementation of steady-state creep laws in numerical models of salt diapirism. Tectonophysics 225, 457–76.Google Scholar
Vendeville, B. C. & Jackson, M. P. A. 1992. The rise of diapirs during thin-skinned extension. Marine Petroleum Geology 9, 331–54.Google Scholar
Warren, J. K. 1989. Evaporite Sedimentology: Importance in Hydrocarbon Accumulation. Prentice Hall, 320 pp.Google Scholar
Warren, J. K. 2006. Evaporites: Sediments, Resources and Hydrocarbons. Berlin: Springer, 1036 pp.Google Scholar
Weinberg, R. F. 1993. The upwelling transport of inclusions in Newtonian and power-law salt diapirs. Tectonophysics 228, 141–50.Google Scholar
Weinberger, R., Lyakhovsky, V., Baer, G. & Begin, Z. B. 2006. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications for effective viscosity of rock salt. Geophysics Geochemistry Geosystems 7, Q05014, DOI: 10.1029/2005GC001185.Google Scholar
Weijermars, R., Jackson, M. P. A. & Vendeville, B. 1993. Rheological and tectonic modeling of salt provinces. Tectonophysics 217, 143–74.Google Scholar
Withjack, M. O. & Callaway, S. 2000. Active Normal Faulting Beneath a Salt Layer: An Experimental Study of Deformation Patterns in the Cover Sequence. AAPG Bulletin 84, 627–51.Google Scholar
Woidt, W.-D. 1978. Finite element calculations applied to salt dome analysis. Tectonophysics 50, 369–86.Google Scholar
Zulauf, G., Zulauf, J., Bornemann, O., Kihm, N., Peinl, M. & Zanella, F. 2008. Experimental deformation of a single-layer anhydrite in halite matrix under bulk constriction. Part 1. Geometric and kinematic aspects. Journal of Structural Geology 31, 460–74.CrossRefGoogle Scholar