Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T23:20:21.912Z Has data issue: false hasContentIssue false

U–Th–Pb systematics in zircon and apatite from the Chicxulub impact crater, Yucatán, Mexico

Published online by Cambridge University Press:  02 May 2017

MARTIN SCHMIEDER*
Affiliation:
Lunar and Planetary Institute (LPI), 3600 Bay Area Boulevard, Houston, TX 77058, USA NASA–Solar System Exploration Research Virtual Institute (SSERVI)
BARRY J. SHAULIS
Affiliation:
Lunar and Planetary Institute (LPI), 3600 Bay Area Boulevard, Houston, TX 77058, USA NASA–Solar System Exploration Research Virtual Institute (SSERVI)
THOMAS J. LAPEN
Affiliation:
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004, USA
DAVID A. KRING
Affiliation:
Lunar and Planetary Institute (LPI), 3600 Bay Area Boulevard, Houston, TX 77058, USA NASA–Solar System Exploration Research Virtual Institute (SSERVI)
*
Author for correspondence: [email protected]

Abstract

This work presents a systematic study of zircon and apatite in melt-bearing impactites from the annular trough of the ~180 km and ~66.04 Ma Chicxulub impact crater, Yucatán, Mexico, using in situ laser ablation – inductively coupled plasma mass spectrometry, in which the petrologic context of the analysed minerals was assessed. Geochronologic U–Pb results for variably shocked zircon from the Yaxcopoil-1 core, including monocrystalline grains and neocrystallised granular aggregates, yielded a discordant array of ages representing the Early Palaeozoic age of the crystalline–metamorphic Maya block in the crater basement and the timing of the Chicxulub impact, respectively, and provide evidence for impact-induced resetting of the U–Pb system. Zircon and fluor-chlorapatite from the Yaxcopoil-1 core, and fluorapatite in clasts of impact melt from the Yucatán-6 core have low 206Pb/204Pb, suggesting the presence of detectable common Pb. The Chicxulub impactites were altered in an initially hot hydrothermal system that lasted up to ~2 Myr; locally, Pb-rich sulphides precipitated. Hydrothermal conditions did not reset the U–Th–Pb systematics of relict zircon, however, due to elevated closure temperatures for Pb diffusion at the fast cooling rates associated with the crater locations of the Yucatán-6 and Yaxcopoil-1 boreholes. Thus, the zircon preserves pre-impact and impact-related ages, rather than those of the hydrothermal system. In contrast, no useful geochronologic information was obtained from relict apatite, because common Pb in these grains overwhelmed radiometrically derived isotope ratios.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, G. & Bollmark, B. 1985. Retention of U and Pb in zircons from shocked granite in the Siljan impact structure, Sweden. Earth and Planetary Science Letters 74, 347–9.Google Scholar
Abramov, O. & Kring, D. A. 2007. Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteoritics & Planetary Science 42, 93112.Google Scholar
Abramov, O., Kring, D. A. & Mojzsis, S. J. 2013. The impact environment of the Hadean Earth. Chemie der Erde – Geochemistry 73, 227–48.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–108.Google Scholar
Ames, D. E., Kjarsgaard, I. M., Pope, K. O., Dressler, B. & Pilkington, M. 2004. Secondary alteration of the impactite and mineralization in the basal Tertiary sequence, Yaxcopoil-1, Chicxulub impact crater, Mexico. Meteoritics & Planetary Science 39, 1145–67.Google Scholar
Ames, D. E., Watkinson, D. H. & Parrish, R. R. 1998. Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26, 447–50.Google Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.Google Scholar
Bohor, B. F., Betterton, W. J. & Krogh, T. E. 1993. Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth and Planetary Science Letters 119, 419–24.Google Scholar
Boyce, J. W. & Hodges, K. V. 2005. U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: insights regarding the impact of recoil redistribution of radiogenic 4He on (U–Th)/He thermochronology. Chemical Geology 219, 261–74.Google Scholar
Cavosie, A. J., Erickson, T. M. & Timms, N. E. 2015. Nanoscale records of ancient shock deformation: Reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater. Geology 43, 315–18.Google Scholar
Cavosie, A. J. & Lugo Centeno, C. 2014. Shocked apatite from the Santa Fe Impact Structure (USA): a new accessory mineral for studies of shock metamorphism. 45th Lunar and Planetary Science Conference (The Woodlands, Texas, 17–21 March, 2014), LPI Contribution 1777, abstract no. 1691. Houston, TX: Lunar and Planetary Institute.Google Scholar
Cavosie, A. J., Timms, N. E., Erickson, T. M., Hagerty, J. J. & Hörz, F. 2016. Transformations to granular zircon revealed: twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA). Geology 44, 703–6.Google Scholar
Chamberlain, K. R. & Bowring, S. A. 2001. Apatite–feldspar U–Pb thermochronometer: a reliable, mid-range (~450°C), diffusion-controlled system. Chemical Geology 172, 173200.Google Scholar
Chang, Z., Vervoort, J. D., McClelland, W. C. & Knaack, C. 2006. U–Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems 7, Q05009. doi: 10.1029/2005GC001100.Google Scholar
Cherniak, D. J. 2010. Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. In Diffusion in Minerals and Melts (eds Zhang, Y. & Cherniak, D. J.), pp. 827–69. Reviews in Mineralogy and Geochemistry 72.Google Scholar
Cherniak, D. J., Lanford, W. A. & Ryerson, F. J. 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta 55, 1663–73.Google Scholar
Cherniak, D. J. & Watson, E. B. 2001. Pb diffusion in zircon. Chemical Geology 172, 524.Google Scholar
Chew, D. M., Petrus, J. A. & Kamber, B. S., 2014. U-Pb La-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363, 185–99.Google Scholar
Chew, D. M., Sylvester, P. J. & Tubrett, M. N. 2011. U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chemical Geology 280, 200–16.Google Scholar
Claeys, Ph., Heuschkel, S., Lounejeva-Baturina, E., Sanchez-Rubio, G. & Stöffler, D. 2003. The suevite of drill hole Yucatán 6 in the Chicxulub impact crater. Meteoritics & Planetary Science 38, 1299–317.Google Scholar
Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A. & Jones, M. M. 2016. Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth and Planetary Science Letters 452, 272–80.Google Scholar
Compston, W., Williams, I. S., Kirschvink, J. L., Zichao, Z. & Guogan, M. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149, 171–84.Google Scholar
Crow, C. A., Jacobsen, B., Moser, D. E., McKeegan, K. D. & Weber, P. K. 2016. NanoSIMS U-Pb dating of shocked zircons. 79th Annual Meeting of the Meteoritical Society (Berlin, Germany, 7–12 August, 2016), LPI Contribution 1921, abstract no. 6507. Houston, TX: Lunar and Planetary Institute.Google Scholar
Cumming, G. L., Kesler, S. E. & Krstic, D. 1981. Source of lead in Central American and Caribbean mineralization, II. Lead isotope provinces. Earth and Planetary Science Letters 56, 199209.Google Scholar
Dempster, T. J., Jolivet, M., Tubrett, M. N., & Braithwaite, C. J. R. 2003. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology 145, 568–77.Google Scholar
Deutsch, A. & Schärer, U. 1994. Dating terrestrial impact events. Meteoritics 29, 301–22.Google Scholar
Dodson, M. H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40, 259–74.Google Scholar
Dressler, B. O., Sharpton, V. L., Schwandt, C. S. & Ames, D. 2004. Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: petrography, geochemistry, and depositional environment. Meteoritics & Planetary Science 39, 857–78.Google Scholar
El Goresy, A. 1965. Baddeleyite and its significance in impact glasses. Journal of Geophysical Research, 70, 3453–6.Google Scholar
Ganapathy, R. 1980. A major meteorite impact on the Earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science 209, 921–3.Google Scholar
Geisler, T., Pidgeon, R. T., Van Bronswijk, W. & Kurtz, R. 2002. Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chemical Geology 191, 141–54.Google Scholar
Geisler, T., Rashwan, A. A., Rahn, M. K. W., Poller, U., Zwingmann, H., Pidgeon, R. T., Schleicher, H. & Tomaschek, F. 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine 67, 485508.Google Scholar
Gleason, J. D., Gehrels, G. E., Dickinson, W. R., Patchett, P. J. & Kring, D. A. 2007. Laurentian sources for detrital zircon grains in turbidite and deltaic sandstones of the Pennsylvanian Haymond Formation, Marathon assemblage, west Texas, USA. Journal of Sedimentary Research 77, 888900.Google Scholar
Grieve, R. A. F. 2005. Economic natural resource deposits at terrestrial impact structures. In Mineral Deposits and Earth Evolution (eds McDonald, I., Butler, I. B., Hetherington, R. J. and Polya, D. A.), pp. 129. Geological Society of London, Special Publication no. 248.Google Scholar
Grieve, R. A. F. & Masaitis, V. L. 1994. The economic potential of terrestrial impact craters. International Geology Review 36, 105–51.Google Scholar
Griffith, E. M. & Paytan, A. 2012. Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817–35.Google Scholar
Harrison, T. M., Catlos, E. J. & Montel, J. M. 2002. U-Th-Pb dating of phosphate minerals. In Phosphates – Geochemical, Geobiological, and Materials Importance (eds Kohn, M. L., Rakovan, J. & Hughes, J. M.), pp. 524–58. Reviews in Mineralogy and Geochemistry 48.Google Scholar
Hart, R. J., Andreoli, M. A., Tredoux, M., Moser, D., Ashwal, L. D., Eide, E. A., Webb, S. J. & Brandt, D. 1997. Late Jurassic age for the Morokweng impact structure, southern Africa. Earth and Planetary Science Letters, 147, 2535.Google Scholar
Hausrath, E. M., Golden, D. C., Morris, R. V., Agresti, D. G. & Ming, D. W. 2013. Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars. Journal of Geophysical Research: Planets 118, 113.Google Scholar
Hecht, L., Wittmann, A., Schmitt, R.-T. & Stöffler, D. 2004. Composition of impact melt particles and the effects of post-impact alteration in suevitic rocks at the Yaxcopoil-1 drill core, Chicxulub crater, Mexico. Meteoritics & Planetary Science 39, 1169–86.Google Scholar
Hellstrom, J., Paton, C., Woodhead, J. & Hergt, J. 2008. Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. In Laser Ablation ICPMS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.), pp. 343–8. Mineralogical Association of Canada short course series 40.Google Scholar
Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo-Zanoguera, A., Jacobsen, S. B. & Boynton, W. V. 1991. Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867–71.Google Scholar
Hodych, J. P. & Dunning, G. R. 1992. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20, 51–4.Google Scholar
Ireland, T. R. & Williams, I. S. 2003. Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry 53, 215–41.Google Scholar
Izett, G. A. 1991. Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez Impact Extinction Hypothesis. Journal of Geophysical Research: Planets 96, 20, 879905.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889–906.Google Scholar
Johansson, Å. 1984. Geochemical studies on the Boda Pb-Zn deposit in the Siljan astrobleme, central Sweden. GFF 106, 1525.Google Scholar
Joy, K. H., Nemchin, A., Grange, M., Lapen, T. J., Peslier, A. H., Ross, D. K., Zolensky, M. E. & Kring, D. A. 2014. Petrography, geochronology and source terrain characteristics of lunar meteorites Dhofar 925, 961 and Sayh al Uhaymir 449. Geochimica et Cosmochimica Acta 144, 299325.Google Scholar
Kalleson, E., Corfu, F. & Dypvik, H. 2009 U–Pb systematics of zircon and titanite from the Gardnos impact structure, Norway: evidence for impact at 546Ma? Geochimica et Cosmochimica Acta 73, 3077–92.Google Scholar
Kamo, S. L. & Krogh, T. E. 1995. Chicxulub crater source for shocked zircon crystals from the Cretaceous-Tertiary boundary layer, Saskatchewan: evidence from new U-Pb data. Geology 23, 281–4.Google Scholar
Kamo, S. L., Lana, C. & Morgan, J. V. 2011. U–Pb ages of shocked zircon grains link distal K–Pg boundary sites in Spain and Italy with the Chicxulub impact. Earth and Planetary Science Letters 310, 401–8.Google Scholar
Kent, A. J. R. 2008. Lead isotope homogeneity of NIST SRM 610 and 612 glass reference materials: constraints from Laser Ablation Multicollector ICP-MS (LA-MC-ICP-MS) Analysis. Geostandards and Geoanalytical Research 32, 129–47.Google Scholar
Keppie, J. D., Dostal, J., Norman, M., Urrutia-Fucugauchi, J. & Grajales-Nishimura, M. 2011. Study of melt and a clast of 546 Ma magmatic arc rocks in the 65 Ma Chicxulub bolide breccia, northern Maya block, Mexico: western limit of Ediacaran arc peripheral to northern Gondwana. International Geology Review 53, 1180–93.Google Scholar
Koeberl, C., Armstrong, R. A. & Reimold, W. U. 1997. Morokweng, South Africa: a large impact structure of Jurassic-Cretaceous boundary age. Geology 25, 731–4.Google Scholar
Kring, D. A. 1995. The dimensions of the Chicxulub impact crater and impact melt sheet. Journal of Geophysical Research 100 (E8), 16,979–86.Google Scholar
Kring, D. A. 2005. Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (~24 km) and Chicxulub (~180 km) impact craters. Chemie der Erde (Geochemistry) 65, 146.Google Scholar
Kring, D. A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255, 421.Google Scholar
Kring, D. A. & Boynton, W. V. 1991. Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti. Geochimica et Cosmochimica Acta 55, 1737–42.Google Scholar
Kring, D. A. & Boynton, W. V. 1992. Petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. Nature 358, 141–4.Google Scholar
Kring, D. A., Hildebrand, A. R. & Boynton, W. V. 1991. The petrology of an andesitic melt rock and a polymict breccia from the interior of the Chicxulub structure, Yucatán, Mexico. Lunar and Planetary Science Conference XXII, Abstracts of Papers, 755–6. Houston, TX: Lunar and Planetary Science Institute.Google Scholar
Kring, D. A., Hörz, F., Zürcher, L. & Urrutia-Fucugauchi, J. 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico. Meteoritics & Planetary Science 39, 879–97.Google Scholar
Krogh, T. E. 1982. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–49.Google Scholar
Krogh, T. E., Davis, D. W. & Corfu, F. 1984. Precise U-Pb zircon and baddeleyite ages for the Sudbury area. In The Geology and Ore Deposits of the Sudbury Structure (eds Pye, E. G., Naldrett, A. J. & Giblin, P. E.), pp. 431–46. Ontario Geological Survey Special Volume 1.Google Scholar
Krogh, T. E., Kamo, S. L. & Bohor, B. F. 1993. Fingerprinting the K/T impact site and determining the time of impact by U–Pb dating of single shocked zircons from distal ejecta. Earth and Planetary Science Letters 119, 425–9.Google Scholar
Krogh, T. E., Kamo, S. L. & Bohor, B. F. 1996. Shock metamorphosed zircons with correlated U-Pb discordance and melt rocks with concordant Protolith ages indicate an impact origin for the Sudbury Structure. In Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S.), pp. 343–53. Geophysical Monograph Series, vol. 95.Google Scholar
Krogh, T. E., Kamo, S. L., Sharpton, V. L., Marín, L. E. & Hildebrand, A. R. 1993. U–Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 366, 731–4.Google Scholar
Krogh, T. E., McNutt, R. H. & Davis, G. L. 1982. Two high precision U-Pb zircon ages for the Sudbury Nickel Irruptive. Canadian Journal of Earth Sciences 19, 723–8.Google Scholar
Kyte, F. T., Zhou, Z. & Wasson, J. T. 1980. Siderophile-enriched sediments from the Cretaceous-Tertiary boundary. Nature 288, 651–6.Google Scholar
Lapen, T. J., Kring, D. A., Zolensky, M. E., Andreasen, R., Righter, M., Swindle, T. D. & Beard, S. P. 2014. Uranium-lead isotope evidence in the Chelyabinsk LL5 chondrite meteorite for ancient and recent thermal events. 45th Lunar and Planetary Science Conference (The Woodlands, TX, USA, 17–21 March, 2014), LPI Contribution 1777, abstract no. 2561. Houston, TX: Lunar and Planetary Institute.Google Scholar
Lee, J. K. W., Williams, I. S. & Ellis, D. J. 1997. Pb, U and Th diffusion in natural zircon. Nature 390, 159–62.Google Scholar
Lopez Ramos, E. 1975. Geological summary of the Yucatan Peninsula. In The Gulf of Mexico and the Caribbean (eds Nairn, A. E. M. & Stehli, F. G.), pp. 257–82. New York: Springer.Google Scholar
Ludwig, K. R. 2008. User's Manual for Isoplot 3.75 – A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 5, revised 30 January 2012. Available online at http://www.bgc.org/isoplot_etc/isoplot.html.Google Scholar
Mänttäri, I. & Koivisto, M. 2001. Ion microprobe uranium–lead dating of zircons from the Lappajärvi impact crater, western Finland. Meteoritics & Planetary Science 36, 1087–95.Google Scholar
Marchi, S., Bottke, W. F., Elkins-Tanton, L. T., Bierhaus, M., Wünnemann, K., Morbidelli, A. & Kring, D. A. 2014. Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature 511, 578–82.Google Scholar
Mattinson, J. M. 2005. Zircon U–Pb chemical abrasion (‘CA-TIMS’) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.Google Scholar
Mayr, S. I., Burkhardt, H., Popov, Yu. & Wittmann, A. 2008 a. Estimation of hydraulic permeability considering the micro morphology of rocks of the borehole YAXCOPOIL-1 (Impact crater Chicxulub, Mexico). International Journal of Earth Sciences 97, 385–99.Google Scholar
Mayr, S. I., Wittmann, A., Burkhardt, H., Popov, Yu., Romushkevich, R., Bayuk, I., Heidinger, P. & Wilhelm, H. 2008 b. Integrated interpretation of physical properties of rocks of the borehole Yaxcopoil-1 (Chicxulub impact structure). Journal of Geophysical Research: Solid Earth 113 (B7), B07201. doi: 10.1029/2007JB005420.Google Scholar
McCarville, P. & Crossey, L. J. 1996. Post-impact hydrothermal alteration of the Manson impact structure. In The Manson Impact Structure, Iowa; Anatomy of an Impact Crater (eds Koeberl, C. & Anderson, R. R.), pp. 347–76. Geological Society of America Special Paper 302.Google Scholar
McGregor, M., McFarlane, C. R. M. & Spray, J. G. 2017. The Nicholson Lake impact structure, Canada: shock features and age of formation. Lunar and Planetary Science Conference XLVIII, abstract no. 2151. Houston, TX: Lunar and Planetary Institute.Google Scholar
Morgan, J. V., Gulick, S. P. S., Bralower, T., Chenot, E., Christeson, G., Claeys, Ph., Cockell, C., Collins, G. S., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G. R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D. R., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K. E. & Zylberman, W. 2016. The formation of peak rings in large impact craters. Science 354, 878–82.Google Scholar
Moser, D. E., Cupelli, C. L., Barker, I. R., Flowers, R. M., Bowman, J. R., Wooden, J. & Hart, J. R. 2011. New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–Th)/He analysis of the Vredefort dome. Canadian Journal of Earth Sciences 48, 117–39.Google Scholar
Naldrett, A. J. 2003. From impact to riches: evolution of geological understanding as seen at Sudbury, Canada. GSA Today, February, 49.Google Scholar
Naumov, M. V. 2005. Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence. Geofluids 5, 165–84.Google Scholar
Nédélec, A., Paquette, J. L., Yokoyama, E., Trindade, R. I., Aigouy, T. & Baratoux, D. 2013. In situ U/Pb dating of impact-produced zircons from the Vargeão Dome (Southern Brazil). Meteoritics & Planetary Science 48, 420–31.Google Scholar
Nelson, M. J., Newsom, H. E., Spilde, M. N. & Salge, T. 2012. Petrographic investigation of melt and matrix relationships in Chicxulub crater Yaxcopoil-1 brecciated melt rock and melt rock-bearing suevite (846–885m, units 4 and 5). Geochimica et Cosmochimica Acta 86, 120.Google Scholar
Nemchin, A. A., Pidgeon, R. T., Healy, D., Grange, M. L., Whitehouse, M. J. & Vaughan, J. 2009. The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteoritics & Planetary Science 44, 1717–34.Google Scholar
Newsom, H. E., Nelson, M. J., Shearer, C. K. & Dressler, B. O. 2006. Mobile element analysis by secondary ion mass spectrometry (SIMS) of impactite matrix samples from the Yaxcopoil-1 drill core in the Chicxulub impact structure. Meteoritics & Planetary Science 41, 1929–45.Google Scholar
Newsom, H. E., Salge, T., Nelson, M. J. & Spilde, M. N. 2010. Discovery of andradite garnet and evidence for high temperature hydrothermal processes (>300°C) in the lower Yaxcopoil-1 impact-melt. Lunar Planetary Science Conference XLI, abstract no. 1751. Houston, TX: Lunar and Planetary Institute.300°C)+in+the+lower+Yaxcopoil-1+impact-melt.+Lunar+Planetary+Science+Conference+XLI,+abstract+no.+1751.+Houston,+TX:+Lunar+and+Planetary+Institute.>Google Scholar
Onorato, P. I. K., Uhlmann, D. R. & Simonds, C. H. 1978. The thermal history of the Manicouagan impact melt sheet, Quebec. Journal of Geophysical Research 83 (B6), 2789–98.Google Scholar
Paces, J. B. & Miller, J. D. Jr 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System, Journal of Geophysical Research 98 (B8), 13,99714,013.Google Scholar
Pirajno, F., Hawke, P., Glikson, A. Y., Haines, P. W. & Uysal, T. 2003. Shoemaker impact structure, Western Australia. Australian Journal of Earth Sciences 50, 775–96.Google Scholar
Popov, Yu., Romushkevich, R., Bayuk, I., Korobkov, D., Mayr, S., Burkhardt, H. & Wilhelm, H. 2004. Physical properties of rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub crater. Meteoritics & Planetary Science 39, 799812.Google Scholar
Reimold, W. U., Koeberl, C., Gibson, R. L. & Dressler, B. O. 2005. Economic mineral deposits in impact structures: a review. In Impact Tectonics (eds Koeberl, C. & Henkel, H.), pp. 479552.Berlin, Heidelberg: Springer.Google Scholar
Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., Morgan, L. E., Mundil, R. & Smit, J. 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–7.Google Scholar
Salge, T. & Newsom, H. 2010. Resorbed andradite garnet in the Lower Yaxcopoil-1 impact melt breccia: evidence for hydrothermal processes at T>300°C. Meteoritics and Planetary Science 73, 5337 (abstract).300°C.+Meteoritics+and+Planetary+Science+73,+5337+(abstract).>Google Scholar
Salisbury, J. A., Tomkins, A. G. & Schaefer, B. F. 2008. New insights into the size and timing of the Lawn Hill impact structure: relationship to the Century Zn–Pb deposit. Australian Journal of Earth Sciences 55, 587603.Google Scholar
Schaltegger, U., Schmitt, A. K. & Horstwood, M. S. A. 2015. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chemical Geology 402, 89110.Google Scholar
Schärer, U. & Deutsch, A. 1990. Isotope systematics and shock-wave metamorphism: II. U-Pb and Rb-Sr in naturally shocked rocks; the Haughton Impact Structure, Canada. Geochimica et Cosmochimica Acta 54, 3435–47.Google Scholar
Schmieder, M. & Jourdan, F. 2013. The Lappajärvi impact structure (Finland): age, duration of crater cooling, and implications for early life. Geochimica et Cosmochimica Acta 112, 321–39.Google Scholar
Schmieder, M., Kring, D. A, Chenot, E., Christeson, G., Claeys, Ph., Cockell, C., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Gulick, S. P. S., Jones, Liu H. S. H. Lofi, J., Lowery, C., Mellett, C., Morgan, J. V., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tikoo-Schantz, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, Xiao, L., Xiao, Z. Y., Yamaguchi, K. E., Zhao, J. W. & Zylberman, W. 2017. Petrology of target dolerite in the Chicxulub peak ring and a possible source of K/Pg boundary picotite spinel. 48th Lunar and Planetary Science Conference (The Woodlands, TX, USA 20–24 March 2017), abstract no. 1235. Houston, TX: Lunar and Planetary Institute.Google Scholar
Schmieder, M., Tohver, E., Jourdan, F., Denyszyn, S. W. & Haines, P. W. 2015. Zircons from the Acraman impact melt rock (South Australia): shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochimica et Cosmochimica Acta 161, 71100.Google Scholar
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, Ph., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, H. J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W.-U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T. & Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–18.Google Scholar
Sharpton, V. L., Dalrymple, G. B., Marín, L. E., Ryder, G., Schuraytz, B. C. & Urrutia-Fucugauchi, J. 1992. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature 359, 819–21.Google Scholar
Sharpton, V. L., Marín, L. E., Carney, J. L., Lee, S., Ryder, G., Schuraytz, B. C., Sikora, P. & Spudis, P. D. 1996. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples. In The Cretaceous-Tertiary Event and Other Catastrophes in Earth History (eds Ryder, G, Fastovsky, D. E. & Gartner, S.), pp. 5574. Geological Society of America Special Paper 307.Google Scholar
Shaulis, B. J., Lapen, T. J., Casey, J. F. & Reid, D. R. 2012. Timing and rates of flysch sedimentation in the Stanley Group, Ouachita Mountains, Oklahoma and Arkansas, USA: constraints from U-Pb zircon ages of subaqueous ash-flow tuffs. Journal of Sedimentary Research 82, 833–40.Google Scholar
Shaulis, B. J., Lapen, T. J. & Toms, A. 2010. Signal linearity of an extended range pulse counting detector: applications to accurate and precise U–Pb dating of zircon by laser ablation quadrupole ICP-MS. Geochemistry, Geophysics, Geosystems 11, Q0AA11. doi: 10.1029/2010GC003198.Google Scholar
Sigurdsson, H., Bonté, P., Turpin, L., Chaussidon, M., Metrich, N., Steinberg, M., Pradel, P. & d'Hondt, S. 1991. Geochemical constraints on source region of Cretaceous/Tertiary impact glasses. Nature 353, 839–42.Google Scholar
Singleton, A. C., Osinski, G. R. & Shieh, S. R. 2015. Microscopic effects of shock metamorphism in zircons from the Haughton impact structure, Canada. In Large Meteorite Impacts and Planetary Evolution V (eds Osinski, G. R. & Kring, D. A.), pp. 135–48. Geological Society of America Special Paper 518.Google Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.Google Scholar
Smit, J. 1999. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences 27, 75113.Google Scholar
Smit, J. & Hertogen, J. 1980. An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285, 198200.Google Scholar
Spear, F. S. & Pyle, J. M. 2002. Apatite, monazite, and xenotime in metamorphic rocks. In Phosphates – Geochemical, Geobiological, and Materials Importance (eds Kohn, M. L., Rakovan, J. & Hughes, J. M.), pp. 293335. Reviews in Mineralogy and Geochemistry 48Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.Google Scholar
Stern, R. A. 1997. The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. In Radiogenic Age and Isotopic Studies, Report 10, pp. 1–31. Geological Survey of Canada, Current Research 1997–F.Google Scholar
Stöffler, D. 1971. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. Journal of Geophysical Research 76, 5541–51.Google Scholar
Sylvester, P., Crowley, J. & Schmitz, M. 2013. U–Pb zircon age of Mistastin Lake crater, Labrador, Canada – implications for high-precision dating of small impact melt sheets and the end Eocene extinction. Mineralogical Magazine 77, 2295 (abstract).Google Scholar
Takano, B. & Watanuki, T. 1974. Geochemical implications of the lead content of barite from various origins. Geochemical Journal 8, 8795.Google Scholar
Taylor, B. E. & Liou, J. G. 1978. The low-temperature stability of andradite in C–O–H fluids. American Mineralogist 63, 378–93.Google Scholar
Tepper, J. H. & Kuehner, S. M. 1999. Complex zoning in apatite from the Idaho batholith: a record of magma mixing and intracrystalline trace element diffusion. American Mineralogist 84, 581–95.Google Scholar
Terada, K., Anand, M., Sokol, A. K., Bischoff, A. & Sano, Y. 2007. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450, 849–52.Google Scholar
Thomson, S. N., Gehrels, G. E., Ruiz, J. & Buchwaldt, R. 2012. Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems 13, Q0AA21, 23 pp. doi: 10.1029/2011GC003928.Google Scholar
Timms, N. E., Erickson, T. M., Pearce, M. A., Cavosie, A. J., Schmieder, M., Tohver, E., Reddy, S. M., Zanetti, M. R., Nemchin, A. A. & Wittmann, A. 2017. A pressure-temperature phase diagram for zircon at extreme conditions. Earth-Science Reviews 165, 185202.Google Scholar
Timms, N. E., Reddy, S. M., Healy, D., Nemchin, A. A., Grange, M. L., Pidgeon, R. T. & Hart, R. 2012. Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteoritics & Planetary Science 47, 120–41.Google Scholar
Tohver, E., Lana, C., Cawood, P. A., Fletcher, I. R., Jourdan, F., Sherlock, S., Rasmussen, B., Trindade, R. I. F., Yokoyama, E., Souza Filho, C. R. & Marangoni, Y. 2012. Geochronological constraints on the age of a Permo-Triassic impact event: U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochimica et Cosmochimica Acta 86, 214–27.Google Scholar
Watson, E. B., Cherniak, D. J., Hanchar, J. M., Harrison, T. M. & Wark, D. A. 1997. The incorporation of Pb into zircon. Chemical Geology 141, 1931.Google Scholar
Wielicki, M. M., Harrison, T. M. & Schmitt, A. K. 2012. Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth and Planetary Science Letters 321, 2031.Google Scholar
Wielicki, M. M., Harrison, T. M. & Stockli, D. 2014. Dating terrestrial impact structures: U-Pb depth profiles and (U-Th)/He ages of zircon. Geophysical Research Letters 41, 4168–75.Google Scholar
Wittmann, A., Kenkmann, T., Schmitt, R.-T. & Stöffler, D. 2006. Shock-metamorphosed zircon in terrestrial impact craters. Meteoritics & Planetary Science 41, 433–54.Google Scholar
Wohlgemuth, L., Bintakies, E., Kück, J., Conze, R. & Harms, U. 2004. Integrated deep drilling, coring, downhole logging, and data management in the Chicxulub Scientific Drilling Project (CSDP), Mexico. Meteoritics & Planetary Science 39, 791–7.Google Scholar
Xiao, L., Zhao, J. W., Liu, H. S., Xiao, Z. Y., Morgan, J. V., Gulick, S. P. S., Kring, D. A., Claeys, Ph., Riller, U., Chenot, E., Christeson, G., Cockell, C., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Lofi, J., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Smit, J., Tikoo-Schantz, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, Yamaguchi, K. E. & Zylberman, W. 2017. Ages and geochemistry of the basement granites of the Chicxulub impact crater: implications for peak ring formation. 48th Lunar and Planetary Science Conference (The Woodlands, TX, USA, 20–24 March 2017), abstract no. 1311. Houston, TX: Lunar and Planetary Institute.Google Scholar
Zürcher, L. & Kring, D. A. 2004. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteoritics & Planetary Science 39, 1199–221.Google Scholar
Zurcher, L., Lounejeva-Baturina, E. & Kring, D. A. 2005. Preliminary analysis of relative abundances of hydrothermal alteration products in the C1-N10, Y6-N19, and Yax-1_863. 51 impact melt samples, Chicxulub Structure, Mexico. 36th Lunar and Planetary Science Conference, abstract no. 1983. Houston, TX: Lunar and Planetary Institute.Google Scholar
Supplementary material: File

Schmieder supplementary material

Schmieder supplementary material 1

Download Schmieder supplementary material(File)
File 10.1 MB