Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T11:44:43.827Z Has data issue: false hasContentIssue false

U–Pb and 40Ar–39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen

Published online by Cambridge University Press:  12 January 2010

DONG-SHENG YANG*
Affiliation:
Key Laboratory of Metallogenic Dynamics, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Guangzhou 510640, China
XIAN-HUA LI
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
WU-XIAN LI
Affiliation:
Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
XIN-QUAN LIANG
Affiliation:
Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
WEN-GUO LONG
Affiliation:
Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
XIAO-LIN XIONG
Affiliation:
Key Laboratory of Metallogenic Dynamics, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Guangzhou 510640, China
*
Author for correspondence: [email protected]

Abstract

Composite Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb zircon and 40Ar–39Ar step-heating biotite-hornblende ages are used to provide constraints on the timing and origin of the felsic gneissic rocks in the Baiyunshan Mountains region and to elucidate their tectonothermal history. SHRIMP dating and CL imaging of zircons give magmatic zircon crystallization ages between Late Ordovician and Early Silurian (c. 453.5 Ma, 446 Ma, and 439 Ma) for three representative felsic gneisses, suggesting that most of the Baiyunshan gneiss cannot represent basement rocks of the Cathaysia Block as previously thought. Including the present age information, a synthesis of available age data for regional Wuyun (Wuyi-Yunkai) events reflects the emergence of orogen-wide magmatism that could be syn-orogenic and have occurred mainly between 460 and 420 Ma in the South China Block. Inherited zircons are abundant, with ages clustering at late Mesoproterozoic (1189–1017 Ma) and middle Mesoproterozoic (772 Ma), which reveals that the Baiyunshan orthogneiss samples a crustal basement containing significant igneous or recycled components related to the Rodinia amalgamation and break-up. A SHRIMP date of 212 ± 12 Ma from a white rim of zircon provides evidence for metamorphic overprinting of an Indosinian tectonothermal event on the Baiyunshan gneiss. Incremental heating experiments with six biotite samples and one hornblende sample from a variety of metamorphic rocks yielded two distinct 40Ar–39Ar age groups: 150–155 and 94–98 Ma. The older ages are similar to zircon U–Pb dates for widespread granitic intrusions in central Guangdong. We attribute them to Late Jurassic magmatism-induced thermal resetting of the biotite K–Ar system. On the other hand, the younger age group is interpreted to record either cooling through the biotite closure temperature of ~300–350 °C or a second resetting of biotite Ar isotopes at c. 94–98 Ma due to contemporaneous magmatic activity. Our present age data suggest that the Maofengshan orthogneiss was exhumed to 8 to 10 km crustal levels at c. 150 Ma, whereas the eastward components of gneissic rock masses appear to have passed upward through the same crustal depth synchronously or later (by c. 94 Ma). Exhumation of middle crustal-level rocks in the study area since c. 155 Ma is roughly coeval with exhumation of gneissic rocks from elsewhere in the Wuyun Orogen, suggesting a large-scale mechanism for the exhumation pulse related to the Yanshanian extensional tectonic regime.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Charvet, J., Lapierre, H. & Yu, Y. 1994. Geodynamic significance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences 68, 387–96.CrossRefGoogle Scholar
Charvet, J., Shu, L. S., Shi, Y. S., Guo, L. Z. & Faure, M. 1996. The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13, 223–35.CrossRefGoogle Scholar
Chen, B. 1992. A study of the Gaozhou-Yunlu metamorphic zones of Yunkai Caledonides. Journal of Nanjing University 4 (1), 5967 (in Chinese with English abstract).Google Scholar
Chen, J. F., Foland, K. A., Xing, F. M., Xu, X. & Zhou, T. X. 1991. Magmatism along the southeast margin of the Yangtze and Cathaysia Blocks of China. Geology 19, 815–18.Google Scholar
Chen, J. F. & Jahn, B. M. 1998. Crustal evolution of Southeastern China: Nd and Sr evidence. Tectonophysics 284, 101–33.CrossRefGoogle Scholar
Dallmeyer, R. D. & Lecorche, J. P. 1990. 40Ar/39Ar polyorogenic mineral age record in the northern Mauritanide orogen, West Africa. Tectonophysics 177, 81107.CrossRefGoogle Scholar
Dalrymple, G. B. & Lanphere, M. A. 1974. 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochimica et Cosmochimica Acta 38, 715–38.CrossRefGoogle Scholar
Da Silva, L. C., Hartmann, L. A., Mcnaughton, N. J. & Fletcher, I. 2000. Zircon U–Pb SHRIMP dating of a Neoproterozoic overprint in Paleoproterozoic granitic-gneissic terranes, southern Brazil. American Mineralogist 85, 649–67.CrossRefGoogle Scholar
Deng, J. R. & Zhang, Z. P. 1996. Study on the Nappe Structure of Xuefeng Old Land in Caledonian Stage in Hunan Province. Journal of East China Geological Institute 19 (3), 201–10 (in Chinese with English abstract).Google Scholar
Fraser, G., Ellis, D. & Eggins, S. 1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25, 607–10.2.3.CO;2>CrossRefGoogle Scholar
Gao, S., Lin, W. L. & Qiu, Y. M. 1999. Contrasting geochemical and Sm–Nd isotopic compositions of Archaean metasediments from the Kongling high grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta 63, 2071–88.CrossRefGoogle Scholar
Geng, H. Y., Xu, X. S., O'Reilly, S. Y., Zhao, M. & Sun, T. 2006. Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance. Science in China (Series D) 49, 696713.CrossRefGoogle Scholar
Geological Map of Guangzhou. 1968. Guangdong, People's Republic of China, 1 sheet, scale 1/200,000.Google Scholar
Geological Map of Heyuan. 1968. Guangdong, People's Republic of China, 1 sheet, scale 1/200,000.Google Scholar
Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W. & Lourens, L. J. 2004. A new geologic time scale, with special reference to Precambrian and Neogene. Episodes 27, 83100.CrossRefGoogle Scholar
GBGMR (Guangdong Bureau of Geology and Mineral Resources). 1988. Regional Geology of Guangdong Province, pp. 607–63. Beijing: Geological Publishing House.Google Scholar
Guo, L. G., Liu, Y. P., Li, C. Y., Xu, W. & Ye, L. 2009. SHRIMP zircon U–Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochemical Journal 43, 101–22.CrossRefGoogle Scholar
Guo, L. Z., Shi, Y. S., Lu, H. F., Ma, R. S. & Dong, H. G. 1989. The pre-Devonian tectonic patterns and evolution of south China. Journal of Southeast Asian Earth Sciences 3 (1–4), 8793.Google Scholar
Guo, L. Z., Yu, J. H. & Shi, Y. S. 1965. Main features of tectonic development of the Caledonian period folded geosyncline, south China. In Geotectonic Problems of China, pp. 165–83. Beijing: Science Press.Google Scholar
Hanchar, J. M. & Miller, C. F. 1993. Zircon zonation patterns as revealed by cathodoluminescence and back-scattered electron images: implications for interpretation of complex crustal histories. Chemical Geology 110, 113.CrossRefGoogle Scholar
Harrison, T. M., Heizler, M. T. & Lovera, O. M. 1993. In vacuo crushing experiments and K-feldspar thermochronology. Earth and Planetary Science Letters 117, 169–80.CrossRefGoogle Scholar
Harrison, T. M., Heizler, M. T., Lovera, O. M., Chen, W. & Grove, M. 1994. A chlorine disinfectant for excess argon released from K-feldspar during step heating. Earth and Planetary Science Letters 123, 95104.CrossRefGoogle Scholar
Hoskin, P. W. O. & Black, L. P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18, 423–39.CrossRefGoogle Scholar
Hoskin, P. W. O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 2762.CrossRefGoogle Scholar
Hsü, K. J. 1994. Tectonic facies in an archipelago model of intra-plate orogenesis. Geological Society of America Today 4, 289–93.Google Scholar
Huang, T. K. 1960. The main characteristics of the geologic structures of China: preliminary conclusions. Acta Geologica Sinica 40 (1), 137.Google Scholar
Jahn, B. M., Zhou, X. H. & Li, J. L. 1990. Formation and tectonic evolution of southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics 183, 145–60.CrossRefGoogle Scholar
Kelley, S. 2002. Excess argon in K–Ar and Ar–Ar geochronology. Chemical Geology 188, 122.CrossRefGoogle Scholar
Koppers, A. A. P. 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences 28, 605–19.CrossRefGoogle Scholar
Kornprobst, J. 2002. Metamorphic Rocks and Their Geodynamic Significance – A Petrological Handbook. Dordrecht: Kluwer Academic Publishers.Google Scholar
Lapierre, H., Jahn, B. M., Charvet, J. & Yu, Y. W. 1997. Mesozoic magmatism in Zhejiang Province and its relation with the tectonic activities in SE China. Tectonophysics 274, 321–38.CrossRefGoogle Scholar
Lee, J. K. W., Onstott, T. C., Cashman, K. V., Cumbest, R. J. & Johnson, D. 1991. Incremental heating of hornblende in vacuo: Implications for 40Ar/39Ar geochronology and the interpretation of thermal histories. Geology 19, 872–6.2.3.CO;2>CrossRefGoogle Scholar
Li, X. H. 1994. A comprehensive U–Pb, Sm–Nd, Rb–Sr and 40Ar–39Ar geochronological study on Guidong Granodiorite, southeast China: Records of multiple tectonothermal events in a single pluton. Chemical Geology 115, 283–95.CrossRefGoogle Scholar
Li, X. H. 1997. Timing of the Cathaysia Block formation: Constraints from SHRIMP U–Pb zircon geochronology. Episodes 20, 188–92.CrossRefGoogle Scholar
Li, X. H. 2000. Cretaceous magmatism and lithospheric extension in southeast China. Journal of Asian Earth Sciences 18, 293305.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Wingate, M. T. D., Chung, S. L., Liu, Y., Lin, G. C. & Li, W. X. 2006. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Research 146, 115.CrossRefGoogle Scholar
Li, X. H.., Li, Z. X., Li, W. X., Liu, Y., Yuan, C., Wei, G. J. & Qi, C. S. 2007. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos 96, 186204.CrossRefGoogle Scholar
Li, X. H. & McCulloch, M. T. 1996. Secular variations in the Nd isotopic composition of the Neoproterozoic sediments from the southern margin of the Yangtze Block: evidence for a Proterozoic continental collision in southeastern China. Precambrian Research 76, 6776.CrossRefGoogle Scholar
Li, X. H., Tatsumoto, M., Premo, W. R. & Gui, X. T. 1989. Age and origin of the Tanghu granite, southeast China: results from U–Pb single zircon and Nd isotopes. Geology 17, 395–9.Google Scholar
Li, X. M., Wang, Y. J., Tan, K. X. & Peng, T. P. 2005. Meso-Cenozoic uplifting and exhumation on Yunkaidashan: Evidence from fission track thermochronology. Chinese Science Bulletin 50 (9), 903–9.CrossRefGoogle Scholar
Li, Z. X. 1998. Tectonic history of the major east Asian lithospheric blocks since the mid-Proterozoic: a synthesis. In Mantle Dynamics and Plate Interactions in East Asia, Geodynamics Series 27 (eds Martin, F. J., Chung, S. L., Lo, C. H. & Lee, T. Y.), pp. 221–43. American Geophysical Union.CrossRefGoogle Scholar
Li, Z. X. & Li, X. H. 2007. Formation of the 1300 km-wide intra-continental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 35, 179–82.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J. 1999. The Breakup of Rodinia: Did it start with a mantle plume beneath south China? Earth and Planetary Science Letters 173, 171–81.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S. & Zhou, H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Wartho, J. A., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. M. 2010. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai Orogeny, southeastern South China: New age constraints and P–T conditions. Geological Society of America Bulletin, DOI 10.1130/B30021.1, in press.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Zhou, H. & Kinny, P. D. 2002. Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Li, Z. X. & Powell, C. M. 2001. An outline of the Paleogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53, 237–77.CrossRefGoogle Scholar
Liu, B. & Xu, X. (eds) 1994. Atlas of Lithofacies and Paleogeography of South China. Beijing: Science Press, 188 pp.Google Scholar
Liu, C. S., Chen, X. M., Wang, R. C., Zhang, A. C. & Hu, H. 2005. The products of partial melting of the lower crust: origin of early Yanshanian Lapu monzogranite, Guangdong province. Geological Journal of China Universities 11, 343–57.Google Scholar
Liu, J. X. & Zhuang, W. M. 2003. Zircon Pb–Pb ages of Pre-Sinian basement in central Guangdong Province and their geological significance. Geology and Mineral Resources of South China 2, 52–7 (in Chinese with English abstract).Google Scholar
Liu, R., Zhang, L., Zhou, H. W., Zhong, Z. Q., Zeng, W., Xiang, H., Jin, S., Lu, X. Q. & Li, C. Z. 2008. Petrogenesis of the Caledonian migmatites and related granites in northwestern Fujian province, south China: syn-deformational crustal anatexis. Acta Petrologica Sinica 24 (6), 1205–22 (in Chinese with English abstract).Google Scholar
Lou, F. S., Shen, W. Z., Wang, D. Z., Shu, L. S., Wu, F. J., Zhang, F. R. & Yu, J. H. 2005. Zircon U–Pb chronology of the Wugongshan dome compound granite in Jiangxi province. Acta Geologica Sinica 79, 636–44 (in Chinese with English abstract).Google Scholar
McDougall, I. & Harrison, M. T. 1999. Geochronology and thermochronology by the 40Ar/39Ar method. Second edition. New York: Oxford University Press, 269 pp.CrossRefGoogle Scholar
McKerrow, W. S., Niocaill, C. M. & Dewey, J. F. 2000, The Caledonian Orogeny redefined. Journal of the Geological Society, London 157, 1149–54.CrossRefGoogle Scholar
Peng, S. B., Jin, Z. M., Liu, Y. H., Fu, J. M., He, L. Q., Cai, M. H. & Wang, Y. B. 2006. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai Orogenic Belt, western Guangdong Province, China. Earth Science – Journal of China University of Geosciences 17 (1), 112.CrossRefGoogle Scholar
Qiu, H. N. & Wijbrans, J. R. 2006. Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing. Geochimica et Cosmochimica Acta 70, 2354–70.CrossRefGoogle Scholar
Qiu, H. N. 2006. Construction and development of new Ar–Ar laboratories in China: Insight from GV-5400 Ar–Ar laboratory in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Geochimica 35, 133–40 (in Chinese with English abstract).Google Scholar
Ren, J. S. 1964. A preliminary study on pre-Devonian geotectonic problems of southeastern China. Acta Geologica Sinica 44 (4), 418–31.Google Scholar
Roger, F., Leloup, P. H., Jolivet, M., Lacassin, R., Trinh, P. T., Brunel, M. & Seward, D. 2000. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology. Tectonophysics 321, 449–66.CrossRefGoogle Scholar
Rubatto, D. 2002. Zircon trace element geochemuistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184, 123–38.CrossRefGoogle Scholar
Sang, H. Q., Wang, F, He, H. Y., Wang, Y. L., Yang, L. K. & Zhu, R. X. 2006. Intercalibration of ZBH-25 biotite reference material utilized for K–Ar and 40Ar–39Ar age determination. Acta Petrologica Sinica 22 (12), 3059–78.Google Scholar
Shen, W. Z., Ling, H. F., Li, W. X. & Wang, D. Z. 2000. Crust evolution in southeast China: evidence from Nd model ages of granitoids. Science in China 43, 3649.CrossRefGoogle Scholar
Shui, T., Xu, B. T., Liang, R. H. & Qiu, Y. S. 1986. Shaoxing–Jiangshan deep-seated fault zone, Zhejiang province. Chinese Science Bulletin 81 (18), 1250–5.Google Scholar
Siebel, W., Henjes-Kunst, F. & Rhede, D. 1998. High-temperature memory in calcic amphiboles and constraints on compositional control of their 40Ar/39Ar ages. Geology 26, 31–4.2.3.CO;2>CrossRefGoogle Scholar
Shu, L. S. 2006. Predevonian tectonic evolution of south China: from Cathaysian Block to Caledonian period folded orogenic belt. Geological Journal of China Universities 12, 418–31.Google Scholar
Shu, L. S., Lu, H. F., Jia, D., Charvet, J. & Faure, M. 1999. Study of the 40Ar/39Ar isotopic age for the early Paleozoic tectonothermal event in the Wuyishan region, south China. Journal of Nanjing University (Natural Sciences) 35, 668–74 (in Chinese with English abstract).Google Scholar
Singer, B. S. & Pringle, M. S. 1996. Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from 40Ar/39Ar incremental heating analyses of lavas. Earth and Planetary Science Letters 139, 4761.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Sun, T. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China 25, 332–5.Google Scholar
Wan, Y. S., Liu, D. Y., Xu, M. H., Zhuang, J. M., Song, B., Shi, Y. R. & Du, L. L. 2007. SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research 12 (1–2), 166–83.CrossRefGoogle Scholar
Wang, H. N., Ling, H. F., Zhou, L. Y., Yang, F. G. & Wang, Y. X. 2003 a. Sm–Nd isotope dating and geological implications for the Mesoproterozoic Manmianshan Group in Fujian province. Geological Journal of China Universities 9 (4), 566–72.Google Scholar
Wang, J., Li, X. H., Duan, T. Z., Liu, D. Y., Song, B., Li, Z. X. & Gao, Y. H. 2003 b. Zircon SHRIMP U–Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chinese Science Bulletin 48, 1663–9.CrossRefGoogle Scholar
Wang, Y. J., Fan, W. M., Guo, F., Peng, T. P. & Li, C. W. 2003 c. Geochemistry of Mesozoic mafic rocks around the Chenzhou–Linwu fault in south China: implication for the lithospheric boundary between the Yangtze and the Cathaysia Blocks. International Geology Review 45, 263–86.CrossRefGoogle Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122, 141–58.CrossRefGoogle Scholar
Wang, J. H., Tu, X. L. & Sun, D. Z. 1999. U–Pb dating of anatectic migmatites at Gaozhou in the Yunkai block, western Guangdong, China. Geochimica 28 (3), 231–8 (in Chinese with English abstract).Google Scholar
Wang, Y. J., Fan, W. M., Zhao, G. C., Ji, S. C. & Peng, T. P. 2007 a. Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research 12, 404–16.CrossRefGoogle Scholar
Wang, Y. J., Fan, W. M., Sun, M., Liang, X. Q., Zhang, Y. H. & Peng, T. P. 2007 b. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province. Lithos 96, 475502.CrossRefGoogle Scholar
Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P. & Scheveers, R. 1995. Argon geochronology of small samples using the Vulkaan Argon laserprobe. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen–Biological Chemical Geological Physical and Medical Sciences 98 (2), 185218.Google Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralizing processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.), pp. 1–35. Reviews of Economic Geology 7.Google Scholar
Wu, J. T., Liu, J. X. & Liao, S. T. 2001. Basic features of detachment fault in southwest section of the Heyuan fault zone. Guangdong Geology 16 (4), 40–7 (in Chinese with English abstract).Google Scholar
Wu, Q. Z. 1991. New materials and viewpoint on the strata in Guangzhou district. Guangdong Geology 6 (1), 4352 (in Chinese with English abstract).Google Scholar
Xu, B., Guo, L. Z. & Shi, Y. S. 1992. The Proterozoic terranes and mutiphase collision-orogens in Anhui–Zhejiang–Jiangxi area. Beijing: Geological Publishing House (in Chinese with English abstract).Google Scholar
Xu, X. S., O'Reilly, S. Y., Griffin, W. L., Deng, P. & Pearson, N. J. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics 24, TC2003.CrossRefGoogle Scholar
Yan, D. P., Zhou, M. F. & Wang, Y. C. 2006. Structural and geochronological constraints on the Dulong–Song Chay tectonic dome in SE Yunnan (SW China) and northern Vietnam. Journal of Asian Earth Sciences 28, 332–53.CrossRefGoogle Scholar
Ye, M. F., Li, X. H., Li, W. X., Liu, Y. & Li, Z. X. 2007. SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research 12, 144–56.CrossRefGoogle Scholar
Ye, Y., Lan, Y. Q., Chen, Y. S. & Edward, F. 1994. 40Ar–39Ar chronology and metamorphic age of Chencai Group, Zhejiang province, China. Acta Petrologica Sinica 10 (2), 193201.Google Scholar
Yu, J. H., Wang, L. J., Zhou, X. M., Jiang, S. Y., Wang, R. C., Xu, X. S. & Qiu, J. S. 2006. Compositions and formation history of the basement metamorphic rocks in northeastern Guangdong province. Earth Science – Journal of China University of Geosciences 31, 3848 (in Chinese with English abstract).Google Scholar
Yu, J. H., Zhou, X. M., O'Reilly, Y. S., Zhao, L., Griffin, W. L., Wang, R. C., Wang, L. J. & Chen, X. M. 2005. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U–Pb and Lu–Hf isotopic studies of single zircon grains. Chinese Science Bulletin 50 (18), 2080–9.CrossRefGoogle Scholar
Yu, J. H., Zhou, X. M., Zhao, L. & Chen, X. M. 2003. Discovery and implications of granulite facies metamorphic rocks in the eastern Nanling, China. Acta Petrologica Sinica 19 (3), 461–7.Google Scholar
Zeng, W., Zhang, L., Zhou, H. W., Zhong, Z. Q., Xiang, H., Liu, R., Jin, S., Lu, X. Q. & Li, C. Z. 2008. Caledonian reworking of Paleoproterozoic basement in the Cathaysia Block: Constraints from zircon U–Pb dating, Hf isotopes and trace elements. Chinese Science Bulletin 53 (6), 895904.CrossRefGoogle Scholar
Zhang, S. G. & Wu, J. S. 2002. The metamorphic Geology of China. In Geological Atlas of China (ed. Ma, L. F.), pp. 2831. Beijing: Geological Publishing House.Google Scholar
Zhou, H. W., You, Z. D., Zhong, Z. Q. & Han, Y. J. 1994 a. Characteristics of zircons in orbicular gneissic biotite-granite from Yunkai uplifted area. Earth Science – Journal of China University of Geosciences 19 (4), 427–32 (in Chinese with English abstract).Google Scholar
Zhou, H. W., You, Z. D., Zhong, Z. Q. & Han, Y. J. 1994 b. New findings of low pressure granulite facies metamorphic age in the Yunkai uplift. Geological Science and Technology Information 13 (3), 23–6 (in Chinese with English abstract).Google Scholar
Zhou, J. B., Li, X. H., Ge, W. C. & Li, Z. X. 2007. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research 12, 184–97.CrossRefGoogle Scholar
Zhou, X. M. & Li, W. X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326, 269–87.CrossRefGoogle Scholar
Zhou, X. M. & Zhu, Y. H. 1992. Magma mixing within the Jiangshan–Shaoxing fault zone and Precambrian geology on both its sides. Science in China (Series B) 3, 296303 (in Chinese).Google Scholar
Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S. & Niu, Y. L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 29, 2633.CrossRefGoogle Scholar
Zou, H. P., Qiu, Y. X., Zhuang, W. M. & Shao, R. S. 2001. Determination of deformation stages of the Shougouling fault zone in the Guangzhou area. Regional Geology of China, 20 (1), 6772, 81.Google Scholar
Supplementary material: PDF

Yang supplementary material

Figure.pdf

Download Yang supplementary material(PDF)
PDF 90.3 KB
Supplementary material: File

Yang supplementary material

Tables.doc

Download Yang supplementary material(File)
File 466.4 KB