Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T12:10:39.682Z Has data issue: false hasContentIssue false

Trace fossils and correlation of late Precambrian and early Cambrian strata

Published online by Cambridge University Press:  01 May 2009

T. Peter Crimes
Affiliation:
Department of Geological Sciences, University of Liverpool, Brownlow Street, Liverpool L69 3BX, U.K.

Abstract

Trace fossils are abundant and diverse in many clastic sequences spanning the Precambrian-Cambrian boundary and may prove to be the most useful palaeontological method for global correlation in this stratigraphic interval. The ichnofaunas of the latest Precambrian (Vendian) rocks include some forms whose range does not extend into the Cambrian (e.g. Bilinichnus, Intrites, Palaeopascichnus, Vendichnus, Vimenites) and others which continue throughout most or all of the Phanerozoic (e.g. Arenicolites, Aulichnites, Cochlichnus, Didymaulichnus, Gordia, Neonereites, Planolites, Skolithos). At least 50 ichnogenera make their first appearance below the lowest trilobites in sections with broad geographic spread. A few of these appear to have a short time range, extending to about the incoming of the trilobites (e.g. Astropolichnus, Didymaulichnus miettensis, Plagiogmus, Taphrhelminthopsis circularis), but the majority continue through most or all of the Phanerozoic.

For correlation of Precambrian-Cambrian boundary sequences it is therefore possible to use both the occurrence of those ichnogenera with a short time range and the incoming of those with an extended range. Three stratigraphical zones can be recognized with respect to the incoming of trace fossils. Zone I is of Upper Vendian age and includes Arenicolites, Bilinichnus, Cochlichnus, Didymaulichnus, Gordia, Harlaniella, Intrites, Nenoxites, Neonereites, Palaeopascichnus, Skolithos, Vendichnus and Vimenites. In Zone II, of Lower Tommotian age, the earliest examples of Bergaueria, Phycodes, Teichichnus and Treptichnus are encountered. Many trace fossils appear in Zone III, which extends from Upper Tommotian to Lower Atdabanian, but the most important are: Astropolichnus, Cruziana, Diplichnites, Diplocraterion, Dimorphichnus, Plagiogmus, Rusophycus and Taphrhelminthopsis circularis.

This vertical zonation of trace fossils allows an attempt at world-wide correlation, from which the most significant conclusions are that the Vendian/Tommotian boundary can probably be placed: (i) near the middle of the McNaughton Formation in the Rocky Mountains, Canada; (ii) at the base of the Deep Spring Formation or in the underlying Reed Dolomite in the White Inyo Mountains, California, U.S.A.; (iii) low in the Chapel Island Formation in the Burin Peninsula, Newfoundland, Canada; (iv) at or close to the base of the Candana Quartzite in North Spain; (v) at or below the base of the Breivik Member in Finnmark, Norway; and (vi) near or below the base of the Zhongyicun Member at Meischucun, China.

The sections in the Burin Peninsula, Newfoundland and Meischucun, China are favoured candidates for the global stratotype for the Precambrian-Cambrian boundary. In the Burin Peninsula, the trace fossils suggest that the Tommotian/Atdabanian boundary may be within or at the base of the Random Formation, thereby implying that the Tommotian may include a thickness of 500 m of sediment comprising at least most of the Chapel Island Formation. At Meishucun, the ichnofaunal evidence implies that the Tommotian/Atdabanian boundary is probably no higher than the top of the Zhongyicun Member. The thickness of the Tommotian is therefore possibly only about 20 m here, implying a very condensed sequence, a conclusion consistent with an abundance of phosphorites. Two stratotype reference points for the Precambrian-Cambrian boundary have been suggested in this section. The lower point (0.8 m above the base of the Xiawaitoushan Member) may be near the Vendian/Tommotian boundary or younger, while the higher point (base of Unit 7 of the Zhongyicun Member) is probably Upper Tommotian or even Lower Atdabanian. The higher point would place the boundary above the world-wide dramatic increase in trace fossil abundance and diversity but probably before the first trilobites. This would almost certainly have advantages for correlation. The inference that the Meishucun section is younger than most Chinese work suggests should not therefore, by itself, prejudice its adoption as global stratotype.

In general, where comparative data are available, the trace fossil correlations agree well with pre-existing proposals based on small shelly fossils. The degree of resolution of the two methods would appear at present to be similar but trace fossils, being found mainly in clastic facies, may benefit from more frequent occurrence.

Type
Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G. 1978.El Paleozoico inferior de Argentina según sus trazas fósiles. Ameghiniana 15, 1564.Google Scholar
Aceñolaza, F. G. & Durand, F. 1973. Trazas fósiles del basamento cristalino del noroeste Argentino. Boletin de la Asociación Geologie de Córdoba 2, 4555.Google Scholar
Aceñolaza, F. G & Toselli, A. J. 1981. Geología del noroeste Argentino. Universidad Nacional de Tucuman, Publicatión 1287. 212 pp.Google Scholar
Alpert, S. P. 1975. Planolites and Skolithos from the Upper Precambrian–Lower Cambrian, White Inyo Mountains, California. Journal of Paleontology 49, 508–21.Google Scholar
Alpert, S. P. 1976. Trilobite and star-like trace fossils from the White-Inyo Mountains, California. Journal of Paleontology 50, 226–39.Google Scholar
Alpert, S. P. 1977. Trace fossils and the basal Cambrian boundary. In Trace Fossils 2 (ed. Crimes, T. P. and Harper, J. C.), pp. 18. Geological Journal Special Issue no. 9. Liverpool: Seel House Press.Google Scholar
Banks, N. L. 1970. Trace fossils from the Late Precambrian and Lower Cambrian of Finnmark, Norway. In Trace Fossils (ed. Crimes, T. P. and Harper, J. C.), pp. 1934. Geological Journal Special Issue no. 3. Liverpool: Seel House Press.Google Scholar
Bengtson, S. & Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Science 20, 525–36.CrossRefGoogle Scholar
Bhargava, D. N. & Srikantia, S. V. 1982. Taphrohelminthopsis (sic) circularis from ? Cambrian sediments of southeast Kashmir valley. Journal of the Geological Society of India 23, 406–7.Google Scholar
Bhatt, D. K., Mamgain, V. D., Misra, R. S. & Srivastava, J. P. 1983. Shelly microfossils of Tommotian age from Chert-phosphorite member of Lower Tal Formation, Maldeota, Dehradun District, Uttar Pradesh. Geophytology 13, 116–23.Google Scholar
Brasier, M. D. & Hewitt, R. A. 1979. Environmental setting of fossiliferous rocks from the uppermost Proterozoic–Lower Cambrian of Central England. Palaeogeography, Palaeoclimatology, Palaeoecology 27, 3557.CrossRefGoogle Scholar
Brasier, M. D., Hewitt, R. A. & Brasier, C. J. 1978. On the Late Precambrian – Early Cambrian Hartshill Formation of Warwickshire. Geological Magazine 115, 2136.Google Scholar
Brasier, M. D., Perejon, A. & San José, M. A. 1979. Discovery of an important fossiliferous Precambrian–Cambrian sequence in Spain. Estudios geológicos. Instituto de Investigaciones geológicas ‘Lucas Mallada’ 35, 379–83.Google Scholar
Cowie, J. W. 1985. Continuing work on the Precambrian–Cambrian boundary. Episodes 8, 93–8.CrossRefGoogle Scholar
Cowie, J. W. & Spencer, A. M. 1970. Trace fossils from the Late Precambrian-Lower Cambrian of East Greenland. In Trace Fossils (ed. Crimes, T. P. and Harper, J. C.), pp. 91100. Geological Journal Special Issue no. 3. Liverpool: Seel House Press.Google Scholar
Crimes, T. P. 1968. Cruziana: A stratigraphically useful trace fossil. Geological Magazine 105, 360–4.Google Scholar
Crimes, T. P. 1970. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from Lower Paleozoic strata. In Trace Fossils (ed. Crimes, T. P. and Harper, J. C.), pp. 102–26. Geological Journal Special Issue, no. 3. Liverpool: Seel House Press.Google Scholar
Crimes, T. P. 1974. Colonisation of the early ocean floor. Nature 248, 328–30.Google Scholar
Crimes, T. P. 1975. The stratigraphical significance of trace fossils. In The Study of Trace Fossils (ed. Frey, R. W.), pp. 109–30. Springer Verlag, New York.CrossRefGoogle Scholar
Crimes, T. P. & Anderson, M. M. 1985. Trace fossils from late Precambrian-early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology 59, 310–43.Google Scholar
Crimes, T. P. & Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian-Cambrian) of southwest Africa (Namibia). Journal of Paleontology 56, 890907.Google Scholar
Crimes, T. P. & Jiang, Zhiwen 1986. Trace fossils from the Precambrian-Cambrian boundary candidate at Meishucun, Jinning, Yunnan, China. Geological Magazine 123, 641–9.Google Scholar
Crimes, T. P., Legg, I., Marcos, A. & Arboleya, M. 1977. Late Precambrian–Low Cambrian trace fossils from Spain. In Trace Fossils 2 (ed. Crimes, T. P. and Harper, J. C.), pp. 91138. Geological Journal Special Issue no. 9. Liverpool: Seel House Press.Google Scholar
Daily, B. 1972. The base of the Cambrian and the first Cambrian faunas. Centre for Precambrian Research, University of Adelaide, South Australia. Special Paper 1, 1337.Google Scholar
Daily, B. 1973. Discovery and significance of basal Cambrian Uratanna Formation, Mt Scott Range, Flinders Ranges, South Australia. Search 4, 202–5.Google Scholar
Del Valle, A. 1986. Nuevas trazas fósiles en la Formación Balcarce, Paleozoico Inferior de las Sierras Septentrionales su significado cronológico y ambicicrital. (In press.)Google Scholar
Fedonkin, M. A. 1976. Traces of multicellular animals from the Valdai Series. Izvestiya Akademii Nauka SSSR, 4, 129–32.Google Scholar
Fedonkin, M. A. 1977. Precambrian-Cambrian ichnocoenoses of the east European platform. In Trace Fossils 2 (ed. Crimes, T. P. and Harper, J. C.), pp. 183–94. Geological Journal Special Issue no. 9. Liverpool: Seel House Press.Google Scholar
Fedonkin, M. A. 1978. Ancient trace fossils and the ways of behavioural evolution of mud eaters. Palaeontological Journal 12, 106–12.Google Scholar
Fedonkin, M. A. 1979. Paleoichnology of Precambrian and Early Cambrian. In Paleontology of Precambrian and Early Cambrian (ed. Sokolov, B. S.), pp. 183–92. Leningrad: Akademii Nauka SSSR.Google Scholar
Fedonkin, M. A. 1980 a. Fossil traces of Precambria Metazoa. Izvestiya Akademii Nauka SSSR, series geologie 1, 3946.Google Scholar
Fedonkin, M. A. 1980 b. Early stages of evolution of Metazoa on the basis of palaeoichnological data. Izvestiya Akademii Nauka SSSR, series geologie 2, 226–33.Google Scholar
Fedonkin, M. A. 1981. Belomorskaya biota Venda (White Sea biota of the Vendian). Trudy Geologecheskii Institut Akademii Nauka SSR 342, 99 pp.Google Scholar
Fedonkin, M. A., Liñan, E. & Perejon, A. 1983. Icnofósiles de las rocas precámbrico–cámbricas de la Sierra de Córdoba, España. Boletin de la Real Sociedad Española de Historia Natural (Geología) 81, 125–38.Google Scholar
Fritz, W. H. 1980. International Precambrian–Cambrian boundary working group's 1979 field study to Mackenzie Mountains, Northwest Territories, Canada. In Current Research, Part A, Geological Survey Canada, Paper 80–1 A, 41–5.Google Scholar
Fritz, W. H. & Crimes, T. P. 1985. Lithology, trace fossils and correlation of Precambrian–Cambrian boundary beds, Cassiar mountains, north-central British Columbia, Canada. Geological Survey of Canada Paper 83–13. 24pp.Google Scholar
Germs, G. J. B. 1972, Trace fossils from the Nama Group, southwest Africa. Journal of Paleontology 46, 864–70.Google Scholar
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia 2, 369–93.CrossRefGoogle Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life. Cambridge: Cambridge University Press.Google Scholar
Häntzschel, W. 1975. Trace fossils and problematica. In Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1. Lawrence: Geological Society of America and University of Kansas Press.Google Scholar
Högbom, A. A. 1925. A problematic fossil from the Lower Cambrian of Kinnekulle. Bulletin of the Geological Institution of the University of Uppsala 19, 215–16.Google Scholar
Jaeger, H. & Martinsson, A. 1980. The early Cambrian trace fossil Plagiogmus in its type area. Geologiske Foreningens i Stockholm Forhanlingar 102, 117–26.CrossRefGoogle Scholar
Jenkins, R. J. F., Ford, C. H. & Gehling, J. G. 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia 30, 101–9.Google Scholar
Jiang, Zhiwen, Luo, Huilin & Zang, Shishan. 1982. Trace fossils of the Meishucun section in China. Geological Review 28, 713.Google Scholar
Keller, B. M. & Rozanov, A. Yu. 1979. Upper Precambrian and Cambrian Paleontology of East-European Platform. Moscow: Academy of Sciences of the U.S.S.R.Google Scholar
Kumar, G., Raina, B. K., Bhatt, D. K. & Jangpangi, B. S. 1983. Lower Cambrian body- and trace-fossils from the Tal Formation, Garhwal Synform, Uttar Pradesh, India. Journal of the Paleontological Society of India 28, 106–11.Google Scholar
Liñan, E. 1984. Los icnofósiles de la formación Torrearboles (? Precámbrico–Cámbrico Inferior) en los alrededores de feunte de Cantos, Badajoz. Caudernos do Laboratorio geologico de Laxe 8, 4774.Google Scholar
Mount, J. F., Gevirtzman, D. A. & Signor, P. W. 1983. Precambrian–Cambrian transition problem in western North America. I. Tommotion fauna in the southwestern Great Basin and its implications for the base of the Cambrian system. Geology 11, 224–6.2.0.CO;2>CrossRefGoogle Scholar
Nowlan, G. S., Narbonne, G. M. & Fritz, W. H. 1985. Small shelly fossils and trace fossils near the Precambrian–Cambrian boundary in the Yukon Territory, Canada. Lethaia 18, 233–56.Google Scholar
Perejon, A. 1982. Problematica paleontologica del limite Precámbrico–Cámbrico en España. Real academia de Ciencias Exactas, fisicas y Naturales pp. 95109, Madrid.Google Scholar
Poiré, D. G., Del Valle, A. & Regalia, G. M. 1984. Trazas fósiles en Cuarcitas de la Formación sierras bayas (Precámbrico) y su comparación con las de la Formación Balcarce (Cámbrico–Ordovicico), Sierras septentrionales de la Provincia de Buenos Aires. Noveno congreso Geologie Argentino S.C. de Bariloche, 1984. Actas 4, 249–66.Google Scholar
Raina, B. K., Kumar, G., Bhargava, O. N. & Sharma, V. P. 1983. ? Precambrian – low Lower Cambrian ichnofossils from the Lolab valley, Kashmir, Himalaya, India. Journal of the Palaeontological Society of India 28, 91–4.Google Scholar
Regalia, G. M. & Herrera, H. H. 1981. Phycodes aff. pedum (traza fósil) en estratos cuarciticos de San Manuel, Sierras Septentrionales de la provincia de Buenos Aires, República Argentina. Revista de la Asociación Geologica Argentina 36, 257–61.Google Scholar
Roedel, H. 1929. Erganzung zu meiner Mitteilung über ein kambrisches Geschiebe mit problematischen Spuren. Zeitschrift für Geschiebeforschung 2, 22–6.Google Scholar
Schmitz, U. 1971. Stratigraphie und sedimentologie im Kambrium und Tremadoc der Westlichen Iberischen ketten nordlich Ateca (Zaragosa), NE-Spanien. Münstersche Forschungen zur geologie und paläontologie, no. 22, 123 pp.Google Scholar
Seilacher, A. (1970). Cruziana stratigraphy of nonfossiliferous Palaeozoic sandstones. In Trace Fossils (eds. Crimes, T. P. and Harper, J. C.), pp. 447–76. Geological Journal Special Issue no.3, 447 –476. Seel House Press, Liverpool:Google Scholar
Seilacher, A. 1974. Flysch trace fossils: Evolution of behavioural diversity in the deep-sea. Neues Jahrbuch fur Geologie und Paläontologie. Abhandlungen 4, 233–51.Google Scholar
Shah, S. K. & Sudan, C. S. 1983. Trace fossils from the Cambrian of Kashmir and their stratigraphic significance. Journal of the Geological Society of India 24, 194202.Google Scholar
Singh, I. B. & Rai, V. 1983. Fauna and biogenic structures in Krol–Tal succession (Vendian–Early Cambrian). Lesser Himalaya: their biostratigraphic and palaeoecological significance. Journal of the Palaeontological Society of India 28, 6790.Google Scholar
Sokolov, B. S. & Ivanovskii, A. B. 1985. The Vendian System, vol. 1. Moscow: Academy of Sciences of the U.S.S.R.Google Scholar
Urbanek, A. & Rozanov, A. Yu. 1983. Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Wydawynictwa Geologiczne, Warszawa. 158 pp.Google Scholar
Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia 3, 79109.Google Scholar
Xing, Usheng & Luo, Huilin. 1984. Precambrian–Cambrian boundary candidate, Meishucun, Jinning, Yunnan, China. Geological Magazine 121, 143–54.Google Scholar
Yang, Zunyi, Yin, Jicheng & He, Tinggui. 1982. Early Cambrian trace fossils from the Emei–Ganluo region, Sichuan, and other localities. Geological Review 28, 291298.Google Scholar
Young, F. G. 1972. Early Cambrian and older trace fossils from the southern Cordillera of Canada. Canadian Journal of Earth Sciences 9, 117.Google Scholar