Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T17:43:47.073Z Has data issue: false hasContentIssue false

Timing of post-collisional volcanism in the eastern part of the Variscan Belt: constraints from SHRIMP zircon dating of Permian rhyolites in the North-Sudetic Basin (SW Poland)

Published online by Cambridge University Press:  12 September 2013

MAREK AWDANKIEWICZ*
Affiliation:
University of Wroclaw, Institute of Geological Sciences, ul. Cybulskiego 30, 50-205 Wroclaw, Poland
RYSZARD KRYZA
Affiliation:
University of Wroclaw, Institute of Geological Sciences, ul. Cybulskiego 30, 50-205 Wroclaw, Poland
NORBERT SZCZEPARA
Affiliation:
University of Wroclaw, Institute of Geological Sciences, ul. Cybulskiego 30, 50-205 Wroclaw, Poland
*
*Author for correspondence: [email protected]

Abstract

The final stages of the Variscan orogeny in Central Europe were associated with voluminous granitic plutonism and widespread volcanism. Four samples representative of the main rhyolitic volcanic units from the Stephanian–Permian continental succession of the North-Sudetic Basin, in the eastern part of the Variscan Belt, were dated using the SIMS (SHRIMP) zircon method. Three samples show overlapping 206Pb–238U mean ages of 294 ± 3, 293 ± 2 and 292 ± 2 Ma, and constrain the age of the rhyolitic volcanism in the North-Sudetic Basin at 294–292 Ma. This age corresponds to the Early Permian – Sakmarian Stage and is consistent with the stratigraphic position of the lava units. The fourth sample dated at 288 ± 4 Ma reflects a minor, younger stage of (sub)volcanic activity in the Artinskian. The silicic activity was shortly followed by mafic volcanism. The rhyolite samples contained very few inherited zircons, possibly owing to limited contribution of crustal sources to the silicic magma, or owing to processes involved in anatectic melting and magma differentiation (e.g. resorption of old zircon by Zr-undersaturated melts). The SHRIMP results and the stratigraphic evidence suggest that the bimodal volcanism terminated the early, short-lived (10–15 Ma) and vigorous stage of basin evolution. The Permian volcanism in the North-Sudetic Basin may be correlated with relatively late phases of the regional climax of Late Palaeozoic volcanism in Central Europe, constrained by 41 published SHRIMP zircon age determinations at 299–291 Ma. The Permian volcanism and coeval plutonism in the NE part of the Bohemian Massif can be linked to late Variscan, post-collisional extension.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrowski, P., Kryza, R., Mazur, S. & Żaba, J. 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine 133, 727–39.Google Scholar
Awdankiewicz, M. 2006. Fractional crystallization, mafic replenishment and assimilation in crustal magma chambers: geochemical constraints from the Permian post-collisional intermediate-composition volcanic suite of the North-Sudetic Basin (SW Poland). Geologia Sudetica 38, 3961.Google Scholar
Awdankiewicz, M., Awdankiewicz, H., Kryza, R. & Rodionov, N. 2010 a. SHRIMP zircon study of a micromonzodiorite dyke in the Karkonosze Granite, Sudetes (SW Poland): age constraints for late Variscan magmatism in Central Europe. Geological Magazine 147, 77–85. Google Scholar
Awdankiewicz, M. & Kryza, R. 2012. Late-and post-orogenic volcanism in a Variscan intramontane trough: SHRIMP zircon ages, volume estimates and geodynamic significance of Permo-Carboniferous volcanic succession of the Intra-Sudetic Basin. Mineralogia – Special Papers 40, 65–6.Google Scholar
Awdankiewicz, M., Pieczonka, J., Piestrzyński, A. & Sawłowicz, Z. 2010 b. Late Palaeozoic post-orogenic volcanism in the Sudetes Mts. and Kupferschiefer-type ore deposits in the Fore-Sudetic Monocline, SW Poland. Acta Universitatis Szegediensis. Acta Mineralogica – Petrographica, Field Guide Series 18, 234.Google Scholar
Baranowski, Z., Haydukiewicz, A., Kryza, R., Lorenc, S., Muszyński, A., Dolecki, A. & Urbanek, Z. 1990. Outline of the geology of the Góry Kaczawskie (Sudetes, Poland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 179, 223–57.Google Scholar
Benek, R., Kramer, W., McCann, T., Scheck, M., Negendank, F. J. W., Korich, D., Huebsher, H.-D. & Bayer, U. 1996. Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics 266, 379404.Google Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.Google Scholar
Bossowski, A., Sawicki, L. & Wroński, J. 1981. Mapa Geologiczna Polski 1:200 000. B – mapa bez utworów czwartorzędowych. Arkusz Wałbrzych. Warszawa: Wydawnictwa Geologiczne (in Polish).Google Scholar
Breitkreuz, C., Ehling, B.-C. & Sergeev, S. 2009. Chronological evolution of an intrusive/extrusive system: the Late Paleozoic Halle Volcanic Complex in the north-eastern Saale Basin (Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 160, 173–90.Google Scholar
Breitkreuz, C. & Kennedy, A. 1999. Magmatic flare-up at the Carboniferous/Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Tectonophysics 302, 307–26.Google Scholar
Breitkreuz, C., Kennedy, A., Geißler, M., Ehling, B.-C., Kopp, J., Muszynski, A., Protas, A. & Stouge, S. 2007. Far eastern Avalonia: its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland and Denmark). Geological Society of America Special Papers 423, 173–90.Google Scholar
Cather, S. M., Dunbar, N. W., McDowell, F. W. & Scholle, P. A. 2009. Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis. Geosphere 5, 315–24.Google Scholar
Frąckiewicz, W. 1958. Szczegółowa Mapa Geologiczna Sudetów 1:25 000. Arkusz Świerzawa. Warszawa: Wydawnictwa Geologiczne (in Polish).Google Scholar
Geißler, M., Breitkreuz, C. & Kiersnowski, H. 2008. Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati. International Journal of Earth Sciences (Geologische Rundschau) 97, 973–89.Google Scholar
Górecka, T. 1970. Results of microfloristic research of Permo-Carboniferous deposits in the area between Jawor and Lubań. Kwartalnik Geologiczny 14, 5264 (in Polish, English summary).Google Scholar
Grad, M., Guterch, A., Mazur, S., Keller, G. R., Špičák, A., Hrubcová, P. & Geissler, W. H. 2008. Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on profile S01 from the SUDETES 2003 experiment. Journal of Geophysical Research 113, B10, doi: 10.1029/2007JB005497, 25 pp.Google Scholar
Heeremans, M., Timmerman, M. J., Kirstein, L. A. & Faleide, J. I. 2004. New constraints on the timing of the late Carboniferous – early Permian volcanism in the central North Sea. In Permo-Carboniferous Rifting and Magmatism in Europe (eds Wilson, M., Neumann, E.-R., Davies, G. R., Timmerman, M. J., Heeremans, M. & Larsen, B. T.), pp. 177–93. Geological Society of London, Special Publication no. 223.Google Scholar
Hoffmann, U., Breitkreuz, C., Breiter, K., Sergeev, S., Stanek, K. & Tichomirowa, M. 2013. Carboniferous–Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). International Journal of Earth Sciences (Geologische Rundschau) 102, 7399.Google Scholar
International Commission on Stratigraphy. 2012. International Chronostratigraphic Chart. International Commission on Stratigraphy, August 2012. http://www.stratigraphy.org. Date last accessed: 30 October 2012.Google Scholar
Jerzmański, J. 1956. Porfir wzgórza Wielisławka w Górach Kaczawskich. Przegląd Geologiczny 4, 174–5 (in Polish).Google Scholar
Kozłowski, S. & Parachoniak, W. 1967. Permian volcanism in the North-Sudetic depression. Prace Muzeum Ziemi, Prace Petrograficzne i Geologiczne 11, 191221 (in Polish, English summary).Google Scholar
Kryza, R., Crowley, Q. G., Larionov, A., Pin, C., Oberc-Dziedzic, T. & Mochnacka, K. 2012. Chemical abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwana Research 21, 757–67.Google Scholar
Kryza, R., Mazur, S. & Oberc-Dziedzic, T. 2004. The Sudetic geological mosaic: insights into the root of the Variscan orogen. Przegląd Geologiczny 52, 761–73.Google Scholar
Kryza, R., Willner, A., Massonne, H.-J., Muszynski, A. & Schertl, H.-P. 2011. Blueschist-facies metamorphism in the Kaczawa Mountains (Sudetes, SW Poland) of the Central-European Variscides: P-T constraints by a jadeite-bearing metatrachyte. Mineralogical Magazine 75, 241–63.Google Scholar
Kryza, R. & Zalasiewicz, J. 2008. Records of Precambrian – Early Palaeozoic volcanic and sedimentary processes in the Central European Variscides: a review of SHRIMP zircon data from the Kaczawa succession (Sudetes, SW Poland). Tectonophysics 461, 6071.Google Scholar
Larsen, B. T., Olaussen, S., Sundvoll, B. & Heeremans, M. 2008. The Permo-Carboniferous Oslo Rift through six stages and 65 million years. Episodes 31, 17.Google Scholar
Ludwig, K. R. 2005a. SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 22 pp.Google Scholar
Ludwig, K. R. 2005b. User's Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 71 pp.Google Scholar
Mastalerz, K. 1990. Lacustrine successions in fault-bounded basins: 1. Upper Anthracosia Shale (Lower Permian) of the North-Sudetic Basin, SW Poland. Annales Societatis Geologorum Poloniae 60, 75106.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. & Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Mazur, S., Aleksandrowski, P., Turniak, K. & Awdankiewicz, M. 2007. Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In Granitoids in Poland (eds Kozłowski, A. & Wiszniewska, J.), pp 5987. Archivum Mineralogiae Monograph no. 1.Google Scholar
McCann, T. & Kiersnowski, H. (co-ordinators). 2008. Permian. In The Geology of Central Europe. Vol. 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 531–98. London: The Geological Society of London.Google Scholar
McCann, T., Pascal, C., Timmerman, M. J., Krzywiec, P., López-Gómez, J., Wetzel, A., Krawczyk, C. M., Rieke, H., Lamarche, J. & Sundvoll, B. 2006. Post-Variscan (end Carboniferous – Early Permian) basin evolution in Western and Central Europe. In European Lithosphere Dynamics (eds Gee, D. G. & Stephenson, R. A.), pp 355–88. Geological Society of London, Memoirs no. 32.Google Scholar
Milewicz, J. 1965. Rotliegende deposits in the vicinity of Lwówek Śląski. Biuletyn Instytutu Geologicznego 185. Z badań geologicznych na Dolnym Śląsku 11, 195228 (in Polish, English summary).Google Scholar
Milewicz, J. 1968. The geological structure of the north-sudetic depression. Biuletyn Instytutu Geologicznego 227. Z badań geologicznych na Dolnym Śląsku 17, 531 (in Polish, English summary).Google Scholar
Milewicz, J. & Górecka, T. 1965. Preliminary remarks on the Carboniferous in the North-Sudetic depression. Kwartalnik Geologiczny 9, 97113 (in Polish, English summary).Google Scholar
Milewicz, J. & Kozdrój, W. 1995. Szczegółowa Mapa Geologiczna Sudetów 1:25 000. Arkusz Proboszczów. Warszawa: Państwowy Instytut Geologiczny (in Polish).Google Scholar
Milewicz, J., Szałamacha, J. & Szałamacha, M. 1989. Mapa Geologiczna Polski 1:200 000. B – Mapa bez Utworów Czwartorzędowych. Arkusz Jelenia Góra. Warszawa: Wydawnictwa Geologiczne (in Polish).Google Scholar
Nawrocki, J., Fanning, M., Lewandowska, A., Polechońska, O. & Werner, T. 2008. Palaeomagnetism and the age of the Cracow volcanic rocks (S Poland). Geophysical Journal International 174, 475–88.Google Scholar
Oberc-Dziedzic, T. & Kryza, R. 2012. Late stage Variscan magmatism in the Strzelin Massif (SW Poland): SHRIMP zircon ages of tonalite and Bt-Ms granite of the Gęsiniec intrusion. Geological Quarterly 56, 225–36.Google Scholar
Oberc-Dziedzic, T., Kryza, R. & Białek, J. 2010. Variscan multistage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U-Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geological Quarterly 54, 301–24.Google Scholar
Oberc-Dziedzic, T., Kryza, R. & Pin, C. 2009. The crust beneath the Polish Sudetes: evidence from a gneiss xenolith in Tertiary basanite from Paszowice. Geodinamica Acta 22/3 13−9.Google Scholar
Oberc-Dziedzic, T., Kryza, R., Pin, C. & Madej, S. 2013 a. Sequential granite emplacement: a structural study of the late-Variscan Strzelin intrusion, SW Poland. International Journal of Earth Sciences 102, 1289–304.Google Scholar
Oberc-Dziedzic, T., Kryza, R., Pin, C. & Madej, S. 2013 b. Variscan granitoid plutonism in the Strzelin Massif (SW Poland): petrology and age of the Strzelin granites. Geological Quarterly 57, 269–88.Google Scholar
Ostromęcki, A. 1972. Tuffs and eruptive rock pebbles in the Upper Carboniferous near Świerzawa. Geologia Sudetica 6, 315–21 (in Polish, English summary).Google Scholar
Pańczyk, M. & Bachliński, R. 2004. Rb-Sr dating of Permian silica-rich volcanic rocks from the North-Sudetic Basin – preliminary data. Mineralogia – Special Papers 24, 307–10.Google Scholar
Pękala, M., Wójtowicz, A. & Michalik, M. 2003. Post-eruptive history of Lower Permian volcanic rock (trachybasalt from Lubiechowa; the North-Sudetic Basin). Mineralogia – Special Papers 23, 145–7.Google Scholar
Peryt, T. 1978. Outline of the Zechstein stratigraphy in the North-Sudetic Trough. Kwartalnik Geologiczny 22, 982.Google Scholar
Pietranik, A., Słodczyk, E., Hawkesworth, C. J., Breitkreuz, C., Storey, C. D., Whitehouse, M. & Milke, R. 2013. Heterogeneous zircon cargo in voluminous Late Paleozoic rhyolites: Hf, O isotope and Zr/Hf records of plutonic to volcanic magma evolution. Journal of Petrology. Published online 23 April 2013. doi: 10.1093/petrology/egt019.Google Scholar
Romer, R. L., Förster, H.-J., Kroner, U., Müller, A., Rössler, R., Rötzler, J., Seltmann, R. & Wenzel, T. (eds) 2012. Granites of the Erzgebirge. Relation of Magmatism to the Metamorphic and Tectonic Evolution of the Variscan Orogen. Guidebook to Eurogranites 2012 fieldtrip, October 7–13, 2012. Scientific Technical Report STR12/15. Helmholtz-Zentrum Potsdam – DeutschesGeoForschungsZentrum, 122 pp.Google Scholar
Scheck-Wenderoth, M. & Lamarche, J. 2005. Crustal memory and basin evolution in the Central European Basin System – new insights from a 3D structural model. Tectonophysics 397, 143–65.Google Scholar
Skurzewski, A. 1981. Permian volcanic rocks in the Bolków area. Kwartalnik Geologiczny 25, 317–34 (in Polish, English summary).Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Szczepara, N. 2012. Permian bimodal volcanism in the North-Sudetic Basin: new insights into the emplacement processes, sequence and petrology of volcanic rocks of the Świerzawa area. Mineralogia – Special Papers 40, 127–8.Google Scholar
Szczepara, N. & Awdankiewicz, M. 2010. Textural variation of Permian rhyolites of the North-Sudetic Basin. Mineralogia – Special Papers 37, 110.Google Scholar
Timmerman, M. J. 2004. Timing, geodynamic setting and character of Permo-Carboniferous magmatism in the foreland of the Variscan Orogen, NW Europe. In Permo-Carboniferous Rifting and Magmatism in Europe (eds Wilson, M., Neumann, E.-R., Davies, G. R., Timmerman, M. J., Heeremans, M. & Larsen, B. T.), pp. 4174. Geological Society of London, Special Publication no. 223.Google Scholar
Timmerman, M. J. 2008. Palaeozoic magmatism. In The Geology of Central Europe. Vol. 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 665–48. London: The Geological Society of London.Google Scholar
Timmerman, M. J., Heeremans, M., Kirstein, L. A., Larsen, B. T., Spencer-Dunworth, E.-A. & Sundvoll, B. 2009. Linking changes in tectonic style with magmatism in northern Europe during the late Carboniferous to latest Permian. Tectonophysics 473, 375–90.Google Scholar
Turnau, E., Żelaźniewicz, A. & Franke, W. 2002. Middle to early late Viséan onset of late orogenic sedimentation in the Intra-Sudetic Basin, West Sudetes: miospore evidence and tectonic implications. Geologia Sudetica 34, 916.Google Scholar
Wagner, R. (ed.) 2008. Tabela Stratygraficzna Polski. Polska Pozakarpacka. Warszawa: Ministerstwo Środowiska (in Polish).Google Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.Google Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications in Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.), pp. 135. Reviews in Economic Geology vol. 7. Society of Economic Geologists.Google Scholar
Wojewoda, J. & Mastalerz, K. 1989. Climate evolution, allo- and autocyclity of sedimentation: an example from the Permo-Carboniferous continental deposits of the Sudetes. Przegląd Geologiczny 4, 173–80 (in Polish, English summary).Google Scholar
Ziegler, P. A. & Dezes, P. 2006. Crustal evolution of Western and Central Europe. In European Lithosphere Dynamics (eds Gee, D. G. & Stephenson, R. A.), pp. 4356. Geological Society of London, Memoirs no. 32.Google Scholar
Zimmermann, E. & Kühn, B. 1918. Geologische Karte von Preussen und benachtbarten Deutschen Ländern, Blatt Schönau, Berlin (in German).Google Scholar