Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T17:23:01.826Z Has data issue: false hasContentIssue false

Thermal maturity of the Upper Triassic–Middle Jurassic Shemshak Group (Alborz Range, Northern Iran) based on organic petrography, geochemistry and basin modelling: implications for source rock evaluation and petroleum exploration

Published online by Cambridge University Press:  09 March 2011

ALI SHEKARIFARD
Affiliation:
UPMC-Univ. Paris06 et CNRS, UMR 7193 iSTeP, Equipe Evolution et Modélisation des Bassins Sédimentaires, case 117, 4, pl. Jussieu, F-75252 Paris cedex 05, France University College of Engineering, Institute of Petroleum Engineering, University of Tehran, Tehran, Iran
FRANÇOIS BAUDIN*
Affiliation:
UPMC-Univ. Paris06 et CNRS, UMR 7193 iSTeP, Equipe Evolution et Modélisation des Bassins Sédimentaires, case 117, 4, pl. Jussieu, F-75252 Paris cedex 05, France
KAZEM SEYED-EMAMI
Affiliation:
University College of Engineering, School of Mining Engineering, University of Tehran, Tehran, Iran
JOHANN SCHNYDER
Affiliation:
UPMC-Univ. Paris06 et CNRS, UMR 7193 iSTeP, Equipe Evolution et Modélisation des Bassins Sédimentaires, case 117, 4, pl. Jussieu, F-75252 Paris cedex 05, France
FATIMA LAGGOUN-DEFARGE
Affiliation:
Université d'Orléans et CNRS, UMR 6113 ISTO, 1A rue de la Férollerie, 45071 Orléans cedex 2, France
ARMELLE RIBOULLEAU
Affiliation:
Université Lille 1 et CNRS, UMR 8157 Géosystèmes, bâtiment SN5, 59655 Villeneuve d'Ascq cedex, France
MARIE-FRANÇOISE BRUNET
Affiliation:
UPMC-Univ. Paris06 et CNRS, UMR 7193 iSTeP, Equipe Evolution et Modélisation des Bassins Sédimentaires, case 117, 4, pl. Jussieu, F-75252 Paris cedex 05, France
ALIREZA SHAHIDI
Affiliation:
UPMC-Univ. Paris06 et CNRS, UMR 7193 iSTeP, Equipe Evolution et Modélisation des Bassins Sédimentaires, case 117, 4, pl. Jussieu, F-75252 Paris cedex 05, France Geological Survey of Iran, Azadi Square, Meraj Av., 13185–1494 Tehran, Iran
*
Author for correspondence: [email protected]

Abstract

Organic petrography and geochemical analyses have been carried out on shales, carbonaceous shales and coals of the Shemshak Group (Upper Triassic–Middle Jurassic) from 15 localities along the Alborz Range of Northern Iran. Thermal maturity of organic matter (OM) has been investigated using vitrinite reflectance, Rock-Eval pyrolysis and elemental analysis of kerogen. Reflectance of autochthonous vitrinite varies from 0.6 to 2.2% indicating thermally early-mature to over-mature OM in the Shemshak Group, in agreement with other maturity parameters used. The shales of the Shemshak Group are characterized by poor to high residual organic carbon contents (0.13 to 5.84%) and the presence of hydrogen-depleted OM, predominantly as a consequence of oxidation of OM at the time of deposition and the hydrogen loss during petroleum generation. According to light-reflected microscopy results, vitrinite/vitrinite-like macerals are dominant in the kerogen concentrates from the shaly facies. The coals and carbonaceous shales of the Shemshak Group show a wide range in organic carbon concentration (3.5 to 88.6%) and composition (inertinite- and vitrinite-rich types), and thereby different petroleum potentials. Thermal modelling results suggest that low to moderate palaeo-heat flow, ranging from 47 to 79 mW m−2 (57 mW m−2 on average), affected the Central-Eastern Alborz basin during Tertiary time, the time of maximum burial of the Shemshak Group. The maximum temperature that induced OM maturation of the Shemshak Group seems to be related to its deep burial rather than to a very strong heat flow related to an uppermost Triassic–Liassic rifting. The interval of petroleum generation in the most deeply buried part of the Shemshak Group (i.e. Tazareh section) corresponds to Middle Jurassic–Early Cretaceous times. Exhumation of the Alborz Range during Late Neogene time, especially along the axis of the Central-Eastern Alborz, where maximum vitrinite reflectance values are recorded, probably destroyed possible petroleum accumulations. However, on the northern flank of the Central-Eastern Alborz, preservation of petroleum accumulations may be expected. The northern part of the basin therefore seems the best target for petroleum exploration.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghanabati, A., Saidi, A., Ghasemi Nejad, E., Ahmadzadeh Heravi, M. & Dabiri, O. 2002. Palynostratigraphy of Upper Triassic sediments in North of Alborz Mountains, Galanderud and Paland area. Geoscience 11, 7691 [in Farsi].Google Scholar
Alavi, M. 1996. Tectonostratigraphic synthesis and structural style of the Alborz Mountains system in northern Iran. Journal of Geodynamics 11, 133.CrossRefGoogle Scholar
Allen, P. A. & Allen, J. R. 2005. Basin Analysis Principles and Application, 2nd ed. Blackwell Scientific Publications, 549 pp.Google Scholar
Allen, M. B., Vincent, S. J., Ian Alsop, G., Ismail-Zadeh, A. & Flecker, R. 2003. Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics 366, 223–39.CrossRefGoogle Scholar
Assereto, R. 1966. The Jurassic Shemshak Formation in central Elburz (Iran). Rivista Italiana di Paleontologia e Stratigrafia 72, 1133–82.Google Scholar
Baudin, F. & Téhérani, K. 1991. Faciès organiques et maturation thermique du Lias supérieur de la Formation de Shemshak (Elbourz central, Iran). Eclogae Geologicae Helvetiae 84, 727–38.Google Scholar
Beicip-Franlab, 1995. Genex Single Well (User Guide). Beicip-Franlab, 464 pp.Google Scholar
Behar, F., Beaumont, V. & Penteado, H. L. 2001. Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology 56, 111–34.CrossRefGoogle Scholar
Bertrand, P. 1989. Microfacies and petroleum properties of coals as revealed by a study of North Sea Jurassic coals. International Journal of Coal Geology 13, 575–95.CrossRefGoogle Scholar
Boreham, C. J. & Powell, T. G. 1993. Petroleum source rock potential of coal and associated sediments: qualitative and quantitative aspects. In Hydrocarbons from Coal (eds Law, B. E. & Rice, D. D.), pp. 133–58. American Association of Petroleum Geologists Studies in Geology 38.Google Scholar
Bragin, Y., Jahanbakhsh, F., Golublev, S. & Sadovnikov, G. 1976. Stratigraphy of the Triassic-Jurassic coal-bearing deposits of Alborz. National Iranian Steel Corporation, Tehran, NISC V/O ‘Technoexport’, internal report, 49 pp.Google Scholar
Brunet, M.-F., Shahidi, A., Barrier, E., Muller, C. & Saidi, A. 2007. Geodynamics of the South Caspian Basin southern margin now inverted in Alborz and Kopet-Dagh (Northern Iran). Geophysical Research Abstracts 9, 08080. http://www.cosis.net/abstracts/EGU2007/08080/EGU2007-J-08080.pdf.Google Scholar
Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.-F., Cadet, J. P., Crasquin, S. & Sandulescu, M. 2000. Atlas Peri-Tethys Palaeogeographical Maps, 268 pp., 24 maps.Google Scholar
Dercourt, J., Ricou, L. E. & Vrielynck, B. 1993. Atlas Tethys Palaeoenvironmental Maps. Gauthier-Villard, 307 pp., 14 maps.Google Scholar
Durand, B., Alpern, B., Pittion, J.-L. & Pradier, B. 1986. Reflectance of vitrinite as a control of thermal history of sediments. In Thermal Modeling in Sedimentary Basins (ed. Burrus, J.), pp. 441–74. Paris: Editions Technip.Google Scholar
Espitalié, J., Deroo, G. & Marquis, F. 1985 a. La pyrolyse Rock-Eval et ses applications. Partie I. Revue de l'Institut Français du Pétrole 40, 563–79.CrossRefGoogle Scholar
Espitalié, J., Deroo, G. & Marquis, F. 1985 b. La pyrolyse Rock-Eval et ses applications. Partie II. Revue de l'Institut Français du Pétrole 40, 755–84.CrossRefGoogle Scholar
Espitalié, J., Deroo, G. & Marquis, F. 1986. La pyrolyse Rock-Eval et ses applications. Partie III. Revue de l'Institut Français du Pétrole 41, 7389.CrossRefGoogle Scholar
Forbes, P. L., Ungerer, P., Kuhfuss, A. B., Riis, F. & Eggen, S. 1991. Compositional modelling of petroleum generation and expulsion. Trial application to a local mass balance in the Smorbukk Sor field, Haltenbanken area, Norway. American Association of Petroleum Geologists Bulletin, 75, 873–93.Google Scholar
Fürsich, F. T., Wilmsen, M., Seyed-Emami, K., Cecca, F. & Majidifard, M. R. 2005. The Upper Shemshak Formation (Toarcian-Aalenian) of the eastern Alborz: biota and paleoenvironments during a transgressive-regressive cycle. Facies 51, 365–84.CrossRefGoogle Scholar
Fürsich, F. T., Wilmsen, M., Seyed-Emami, K. & Majidifard, M. R. 2009. Lithostratigraphy of the Upper Triassic-Middle Jurassic Shemshak Group of northern Iran. In South Caspian to Central Iran Basins (eds Brunet, M. F., Wilmsen, M. & Granath, J. W.), pp. 129–60. Geological Society of London, Special Publication no. 312.Google Scholar
Gentzis, T. & Goodarzi, F. 1994. Reflectance suppression in some Cretaceous Coals from Alberta, Canada, In Vitrinite Reflectance as a Maturity Parameter: Application and Limitations (eds Mukhopadhyay, P. K. & Dow, W. G.), pp. 93110. American Chemical Society.CrossRefGoogle Scholar
Ghasemi-Nejad, E., Aghanabati, A. & Dabiri, O. 2004. Upper Triassic dinoflagellate cysts from the base of the Shemshak Group in north of Alborz Mountains, Iran. Review of Palaeobotany and Palynology 132, 207–17.CrossRefGoogle Scholar
Guest, B., Axen, G. J., Lam, P. S. & Hassanzadeh, J. 2006. Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere 2, 3552.CrossRefGoogle Scholar
Guest, B., Guest, A. & Axen, G. J. 2007. Late Tertiary tectonic evolution of northern Iran: a case for simple crustal folding. Global and Planetary Change 58, 435–53.CrossRefGoogle Scholar
Hunt, J. W. 1995. Petroleum Geochemistry and Geology, 2nd ed. New York: W. H. Freeman and Company, 742 pp.Google Scholar
Iglesias, M. J., Cuesta, M. J., Laggoun-Défarge, F. & Suárez-Ruiz, I., 2001. The influence of impregnation by hydrocarbons on coal structure during its thermal evolution. Journal of Analytical and Applied Pyrolysis 58–59, 841–71.CrossRefGoogle Scholar
Inan, S., Yalçin, M. N., Guliev, I. S., Kuliev, K. & Feizullayev, A. A. 1997. Deep petroleum occurrences in the Lower Kura Depression, South Caspian Basin, Azerbaijan: an organic geochemical and basin modeling study. Marine and Petroleum Geology 14, 731–62.CrossRefGoogle Scholar
Justwan, H., Meisingset, I., Dahl, B. & Isaksen, G. H. 2006. Geothermal history and petroleum generation in the Norwegian South Viking Graben revealed by pseudo-3D basin modelling. Marine and Petroleum Geology, 23, 791819.CrossRefGoogle Scholar
Kazmin, V. G. & Tikhonova, N. F. 2005. Early Mesozoic marginal seas in the Black Sea and Caucasus Region: plate tectonic reconstructions. Geotectonics 40, 169–82.CrossRefGoogle Scholar
Lafargue, E., Marquis, F. & Pillot, D. 1998. Rock-Eval 6 applications in hydrocarbon exploration, production and soils contamination studies. Oil & Gas Science and Technology–Revue de l'IFP 53, 421–37.Google Scholar
Laggoun-Défarge, F., Lallier-Vergès, E., Suarez-Ruiz, I., Cohaut, I., Jimenez Bautista, A., Landais, P. & Prado, J. G. 1994. Evolution of vitrinite ultrafine structures during artificial thermal maturation. In Vitrinite Reflectance as a Maturity Parameter: Application and Limitations (eds Mukhopadhyay, P. K. & Dow, W. G.), pp.194205. American Chemical Society.CrossRefGoogle Scholar
Littke, R., Baker, D. R. & Rullkötter, J. 1997. Deposition of petroleum source rocks. In Petroleum and Basin Evolution (eds Welte, D. H., Horsfield, B. & Baker, D. R.), pp.271334. Berlin: Springer.CrossRefGoogle Scholar
Littke, R. & Leythaeuser, D. 1993. Migration of oil and gas in coals. In Hydrocarbons from Coal (eds Law, B. E. & Rice, D. D.), pp. 219–36. American Association of Petroleum Geologists Studies in Geology 38.Google Scholar
McKenzie, D. 1978. Some remarks on the development of sedimentary basin. Earth and Planetary Science Letters 40, 2532.CrossRefGoogle Scholar
Mukhopadhyay, P. K. 1991. Hydrocarbon generation from deltaic and intermontane fluvio-deltaic coal and coaly shale from the Tertiary of Texas and Carboniferous of Nova Scotia. Organic Geochemistry 17, 765–83.CrossRefGoogle Scholar
Nzoussi-Mbassani, P., Copard, Y. & Disnar, J. R. 2005. Vitrinite recycling: diagnostic criteria and reflectance changes during weathering and reburial. International Journal of Coal Geology 61, 223–39.CrossRefGoogle Scholar
Perrussel, B.-P., Laggoun-Défarge, F., Suarez-Ruiz, I., Jimenez, A., Iglesias, M. J. & Rouzaud, J.-N. 1999. About some factors affecting vitrinite reflectance suppression. In Prospects for Coal Science in the 21st Century (eds Li, B. Q. & Liu, Z. Y.), pp. 145–48. Shanxi Science & Technology Press.Google Scholar
Rad, F. K. 1982. Hydrocarbon potential of the eastern Alborz Region, NE Iran. Journal of Petroleum Geology 4, 419–35.CrossRefGoogle Scholar
Rad, F. K. 1986. A Jurassic delta in the eastern Alborz, NE Iran. Journal of Petroleum Geology 9, 281–94.CrossRefGoogle Scholar
Ricou, L. E. 1996. The plate tectonic history of the Past Tethys Ocean. In The Ocean Basins and Margins, Volume 8: The Tethys Ocean (eds Nairn, A. E. M., Ricou, L. E., Vrielynck, B. & Dercourt, J.), pp. 370. New York: Plenum Press.Google Scholar
Sengör, A. M. C. 1990. A new model for the late Paleozoic-Mesozoic tectonic evolution of Iran and implications for Oman. In The Geology and Tectonics of the Oman Region (eds Robertson, A. H. F., Searle, M. P. & Ries, A. C.), pp.797831. Geological Society of London, Special Publication no. 49.Google Scholar
Sengör, A. M. C., Altiner, D., Cin, A., Ustaomer, T. & Hsu, K. J. 1998. Origin and assembly of the Tethysides orogenic collage at the expense of Gondwana Land. In Gondwana and Tethys (eds Audley-Charles, M. G. & Hallam, A.), pp. 119–81. Geological Society of London, Special Publication no. 37.Google Scholar
Seyed-Emami, K. 2003. Triassic in Iran. Facies 48, 91106.CrossRefGoogle Scholar
Seyed-Emami, K. & Alavi-Naini, M. 1990. Bajocian stage in Iran. Memorie Descrittive Della Carta Geologica D'Italia 40, 215–22.Google Scholar
Seyed-Emami, K., Fürsich, F. T., Wilmsen, M., Cecca, F., Majidifard, M. R., Schairer, G. & Shekarifard, A. 2006. Stratigraphy and ammonite fauna of the upper Shemshak Formation (Toarcian–Aalenian) at Tazareh, eastern Alborz, Iran. Journal of Asian Earth Science 28, 259–75.CrossRefGoogle Scholar
Seyed-Emami, K., Fürsich, F. T., Wilmsen, M., Majidifard, M. R. & Shekarifard, A. 2009. Upper Triassic (Norian) cephalopods from the Ekrasar Formation (Shemshak Group) of Northern Alborz, Iran. Rivista Italiana di Paleontologia e Stratigrafia 115, 189–98.Google Scholar
Shekarifard, A., Baudin, F., Schnyder, J. & Seyed-Emami, K. 2009. Characterization of organic matter in the fine-grained siliciclastic sediments of the Shemshak Group (Upper-Triassic – Middle Jurassic) in the Alborz Range, northern Iran. In South Caspian to Central Iran Basins (eds Brunet, M.-F., Wilmsen, M. & Granath, J. W.), pp.161–74. Geological Society of London, Special Publication no. 312.Google Scholar
Sheng, H. & Middleton, M. 2002. Heat flow and thermal maturity modelling in the Northern Carnarvon Basin, North West Shelf, Australia. Marine and Petroleum Geology 19, 1073–88.Google Scholar
Stampfli, G., Mosar, J., Favre, P., Pillevuit, A. & Vanney, J. 2001. Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East Mediterranean Basin connection. Peri-Tethys Memoire 6, Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum National d'Histoire Naturelle 186, 51108.Google Scholar
Stasiuk, L. D., Goodarzi, F. & Bagheri-Sadeghi, H. 2006. Petrology, rank and evidence for petroleum generation, Upper Triassic to Middle Jurassic coals, Central Alborz Region, Northern Iran. International Journal of Coal Geology 67, 249–58.CrossRefGoogle Scholar
Stöcklin, J. 1974. Northern Iran: Alborz Mountains. In Mesozoic-Cenozoic Orogenic Belts; Data for Orogenic Studies; Alpine-Himalayan Orogens (ed. Spencer, A. M.), pp. 213–34. Geological Society of London, Special Publication no. 4.Google Scholar
Sweeney, J. J. & Burnham, A. K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin 74, 1559–70Google Scholar
Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R. & Robert, P. 1998. Organic Petrology. Berlin-Stuttgart: Borntraeger, 704 pp.Google Scholar
Tissot, B. P., Pelet, R. & Ungerer, P. 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. American Association of Petroleum Geologists Bulletin 71, 1445–66.Google Scholar
Tissot, B. P. & Welte, D. H. 1984. Petroleum Formation and Occurrence. Berlin: Springer, 699 pp.CrossRefGoogle Scholar
Tyson, R. V. 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. London: Chapman & Hall, 615 pp.CrossRefGoogle Scholar
Ungerer, P., Burrus, J., Doligez, B., Chenet, P.-Y. & Bessis, F. 1990. Basin evaluation by integrated 2D modeling of heat transfer, fluid flow, hydrocarbon generation and migration. American Association of Petroleum Geologists Bulletin 74, 309–35.Google Scholar
Wilmsen, M., Fürsich, F. T., Seyed-Emami, K., Majidifard, M. R. & Taheri, J. 2009. The Cimmerian orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova 21, 211–18.CrossRefGoogle Scholar
Yalçin, M. N. 1991. Basin modeling and hydrocarbon exploration. Journal of Petroleum Science and Engineering 5, 379–98.Google Scholar
Zanchi, A., Berra, F., Mattei, M., Ghassemi, M. R. & Sabouri, J. 2006. Inversion tectonics in central Alborz, Iran. Journal of Structural Geology 28, 2023–37.CrossRefGoogle Scholar
Supplementary material: File

Shekarifard Supplementary Material

Shekarifard Supplementary Appendix

Download Shekarifard Supplementary Material(File)
File 2.4 MB