Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T19:23:07.821Z Has data issue: false hasContentIssue false

The tectonometamorphic evolution of the Uppermost Unit south of the Dikti Mountains, Crete

Published online by Cambridge University Press:  10 May 2018

SILVIU O. MARTHA*
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
GERNOLD ZULAUF
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
WOLFGANG DÖRR
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
JANNES J. BINCK
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
PATRICK M. NOWARA
Affiliation:
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
PARASKEVAS XYPOLIAS
Affiliation:
Department of Geology, University of Patras, 26500, Patras, Greece
*
Author for correspondence: [email protected]

Abstract

We present a new geological map and new structural, petrographical and geochronological data from the Uppermost Unit of the Cretan nappe pile exposed south of the Dikti Mountains in eastern Crete (Greece). Based on these data, the Uppermost Unit in the study area can be subdivided (from bottom to top) into the Arvi Unit, Theodorii Greenschist and Asterousia Crystalline Complex (ACC)-type rocks. The ACC-type rocks have been affected by polyphase deformation (D1–D3) and metamorphism. Relics of the D1 phase are preserved as internal foliation in garnet porphyroblasts. D2 top-to-the SE shearing under upper amphibolite facies conditions led to the dominant foliation. After post-D2 exhumation, parts of the ACC-type rocks were affected by contact metamorphism of a non-exposed pluton, which intruded at a depth below 10 km during Campanian time (74±2Ma; laser ablation inductively coupled plasma mass spectrometry on zircon). This age, obtained from zircon of chiastolite hornfels, is in line with intrusion ages of ACC-type (meta)granitoids exposed on Crete and on Anafi. The S2-foliation of the ACC-type rocks was reactivated during the late phase of contact metamorphism by D3 top-to-the SE shearing. Latest Cretaceous cross-mica with low silicon content post-dates this shearing event. During middle Paleocene time, the ACC was thrust on top of the Theodorii Greenschist. This thrusting event as well as subsequent brittle thrusting of the greenschists and the ACC-type rocks on top of the prehnite-pumpellyite facies metamorphic Arvi Unit was still accommodated by top-to-the SE kinematics, which is the dominant kinematics of the Uppermost Unit on Crete and on Anafi.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmendinger, R. W., Cardozo, N. & Fisher, D. M. 2012. Structural Geology Algorithms: Vectors and Tensors. Cambridge: Cambridge University Press, 289 pp.Google Scholar
Altherr, R., Kreuzer, H., Lenz, H., Wendt, I., Harre, W. & Dürr, S. 1994. Further evidence for a Late-Cretaceous low pressure/high-temperature terrane in the Cyclades, Greece. Petrology and geochronology of crystalline rocks from the islands of Donoussa and Ikaria. Chemie der Erde 54, 319–28.Google Scholar
Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G. A., Keller, J., Harre, W. & Höhndorf, A. 1982. A Late Oligocene/Early Miocene high temperature belt in the Attic-Cycladic Crystalline Complex (SE Pelagonian, Greece). Geologisches Jahrbuch, Reihe E 23, 97164.Google Scholar
Altherr, R., Seidel, E., Okrusch, M., Schliestedt, M., Reinecke, T., Kreuzer, H., Harre, W., Klein, H. & Dürr, S. 1980. Metamorphic rocks associated with ophiolites in Greece: petrology and geochronology. In International Ophiolite Symposium, Nicosia, Cyprus, 1–8 April, 1979. Abstracts of papers submitted (ed. Panayiotou, A.), p. 910. Λευκωσία [Nicosia]: Τμήμα Γεωλογικής Επισκόπησης [Geological Survey Department].Google Scholar
Aranovich, L. Y. & Podlesskii, K. K. 1983. The cordierite–garnet–sillimanite–quartz equilibrium: experiments and applications. In Kinetics and Equilibrium in Mineral Reactions (ed. Saxena, S. K.), pp. 173198. New York: Springer.CrossRefGoogle Scholar
Aravadinou, E., Xypolias, P., Chatzaras, V., Iliopoulos, I. & Gerogiannis, N. 2016. Ductile nappe stacking and refolding in the Cycladic Blueschist Unit: insights from Sifnos Island (south Aegean Sea). International Journal of Earth Sciences 105 (7), 2075–96, doi: 10.1007/s00531-015-1255-2.CrossRefGoogle Scholar
Aubouin, J. & Dercourt, J. 1965. Sur la géologie de l’Égée: regard sur la Crète (Grèce). Bulletin de la Société Géologique de France 7, 787821.Google Scholar
Be'eri-Shlevin, Y., Avigad, D. & Matthews, A. 2009. Granitoid intrusion and high temperature metamorphism in the Asteroussia Unit, Anafi Island (Greece): petrology and geochronology. Israel Journal of Earth Sciences 58 (1), 1327, doi: 10.1560/IJES.58.1.13.CrossRefGoogle Scholar
Berman, R. G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. Journal of Petrology 29 (2), 445522, doi: 10.1093/petrology/29.2.445.CrossRefGoogle Scholar
Berman, R. G., Brown, T. H. & Greenwood, H. J. 1985. An internally consistent thermodynamic data for rock-forming minerals in the system SiO2–TiO2–Al2O3–Fe2O3–CaO–MgO–FeO-K2O–Na2O–H2O–CO2. Atomic Energy of Canada, Technical Report no. 377, 62 pp.Google Scholar
Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K. & Raith, M. 1992. Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg–Fe partitioning and a reformulation of the biotite–garnet geothermometer. Contributions to Mineralogy and Petrology 111 (1), 8793, doi: 10.1007/BF00296580.CrossRefGoogle Scholar
Bonneau, M. 1972. La nappe métamorphique de l'Asteroussia, lambeau d'affinités pélagoniennes charrié jusque sur la zone de Tripolitza de la Crète moyenne (Grèce). Comptes Rendus de l'Académie des Sciences, D 275, 2303–6.Google Scholar
Bonneau, M. 1973. Les différentes «séries ophiolitifères» de la Crète: une mise au point. Comptes Rendus de l'Académie des Sciences, série D 276, 1249–52.Google Scholar
Bonneau, M. 1984. Correlation of the Hellenide nappes in the south-east Aegean and their tectonic reconstruction. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 517–27. Geological Society, London, Special Publication no. 17, doi: 10.1144/GSL.SP.1984.017.01.38.Google Scholar
Bonneau, M., Angelier, J. & Epting, M. 1977. Réunion extraordinaire de la Société Géologique de France en Crète. Bulletin de la Société Géologique de France, série 7 19 (1), 87102, doi: 10.2113/gssgfbull.S7-XIX.1.87.CrossRefGoogle Scholar
Bonneau, M., Blake, M. C. Jr., Geyssant, J., Kienast, J.-R., Lepvrier, C., Maluski, H. & Papanikolaou, D. J. 1980. Sur la signification des séries métamorphiques (schistes bleus) des Cyclades (Hellénides, Grèce). L'exemple de l’île de Syros. Comptes Rendus de l'Académie des Sciences, série D 29, 1463–7.Google Scholar
Bonneau, M. & Vidakis, M. 2002. Γεωλογικός χάρτης της Ελλάδος 1:50.000. Φύλλο Ἀνω Βιάννος [Geological map of Greece 1:50,000. Ano Viannos sheet]. Αθήνα [Athens]: Ινστιτούτο γεωλογικών και μεταλλεύτικων έρευνων [Institute of Geology and Mineral Exploration].Google Scholar
Brix, M. R., Stöckhert, B., Seidel, E., Theye, T., Thomson, S. N. & Küster, M. 2002. Thermobarometric data from a fossil zircon partial annealing zone in high pressure–low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349 (1–4), 309–26, doi: 10.1016/S0040-1951(02)00059-8.CrossRefGoogle Scholar
Buntebarth, G. & Voll, G. 1991. Quartz grain coarsening by collective crystallization in contact quartzites. In Equilibrium and Kinetics in Contact Metamorphism (eds. Voll, G., Töpel, J., Pattison, D. R. M. & Seifert, F.), pp. 251–65. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Burkhard, M. 1993. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. Journal of Structural Geology 15 (3–5), 351–68, doi: 10.1016/0191-8141(93)90132-T.CrossRefGoogle Scholar
Cardozo, N. & Allmendinger, R. W. 2013. Spherical projections with OSXStereonet. Computers & Geosciences 51, 193205, doi: 10.1016/j.cageo.2012.07.021.CrossRefGoogle Scholar
Creutzburg, N., Drooger, C. W., Meulenkamp, J. E., Papastamiatou, I., Seidel, E. & Tataris, A. 1977. Γενικός γεωλογικός χάρτης Ελλάδος. Νήσος Κρήτη. Κλίμαξ 1: 200.000 [General geological map of Greece. Crete Island. Scale 1: 200,000]. Αθήνα [Athens]: Ινστιτούτο γεωλογικών και μεταλλεύτικων έρευνων [Institute of Geology and Mineral Exploration].Google Scholar
Creutzburg, N. & Papastamatiou, J. 1969. Die Ethia-Serie des südlichen Mittelkreta und ihre Ophiolithvorkommen. Berlin, Heidelberg: Springer, 63 pp.CrossRefGoogle Scholar
Creutzburg, N. & Seidel, E. 1975. Zum stand der geologie des Präneogens auf Kreta. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 149 (3), 363–83.Google Scholar
Dahl, P. S. 1996. The effects of composition on retentivity of argon and oxygen in hornblende and related amphiboles: a field-tested empirical model. Geochimica et Cosmochimica Acta 60 (19), 3687–700, doi: 10.1016/0016-7037(96)00170-6.CrossRefGoogle Scholar
Delaloye, M., Economou, C. & Skounakis, S. 1977. Ages radiométrique de quelques roches ophiolitiques de l’îIe de Crète. In Proceedings of the VI Colloquium on the Geology of the Aegean Region, Athens, 1977 (ed. Kallergis, G.), pp. 129–35. Αθήνα [Athens]: Ινστιτούτο γεωλογικών και μεταλλεύτικων έρευνων [Institute of Geology and Mineral Exploration].Google Scholar
Dubacq, B., Vidal, O. & De Andrade, V. 2010. Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. Contributions to Mineralogy and Petrology 159 (2), 159–74, doi: 10.1007/s00410-009-0421-6.CrossRefGoogle Scholar
Dürr, S. 1985. Γεωλογικός χάρτης της Ελλάδος 1:50.000. Φύλλο Αμοργός–Δονούσα [Geological map of Greece 1:50,000. Amorgos–Donoussa sheet]. Αθήνα [Athens]: Ινστιτούτο γεωλογικών και μεταλλεύτικων έρευνων [Institute of Geology and Mineral Exploration].Google Scholar
Dürr, S., Seidel, E., Kreuzer, H. & Harre, W. 1978. Témoins d'un métamorphisme d’âge crétacé supérieur dans l’Égéide: datations radiométriques de minéraux provenant de l’île de Nikouriá (Cyclades, Grèce). Bulletin de la Société Géologique de France, série 7 20 (2), 209–13.CrossRefGoogle Scholar
Feldhoff, R. A., Lücke, A. & Richter, D. 1991. Über die Diagenese-/Metamorphose Bedingungen der Pindos-und Tripolitza-Serie auf der Insel Kreta (Griechenland). Zentralblatt für Geologie und Paläontologie, Teil I 1991, 1611–22.Google Scholar
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology 66 (2), 113–17, doi: 10.1007/BF00372150.CrossRefGoogle Scholar
Franz, L. 1992. Die polymetamorphe Entwicklung des Altkristallins auf Kreta und im Dodekanes (Griechenland): Eine Geologische, Geochemische, und Petrologische Bestandsaufnahme. Stuttgart: F. Enke, 389 pp.Google Scholar
Gerdes, A. & Zeh, A. 2009. Zircon formation versus zircon alteration – New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the central zone of the Limpopo Belt. Chemical Geology 261 (3–4), 230–43, doi: 10.1016/j.chemgeo.2008.03.005.CrossRefGoogle Scholar
Harrison, T. M. 1981. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology 78 (3), 324–31, doi: 10.1007/BF00398927.CrossRefGoogle Scholar
Harrison, T. M., Duncan, I. & McDougall, I. 1985. Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta 49 (11), 2461–8, doi: 10.1016/0016-7037(85)90246-7.CrossRefGoogle Scholar
Hinsken, T., Bröcker, M., Berndt, J. & Gärtner, C. 2016. Maximum sedimentation ages and provenance of metasedimentary rocks from Tinos Island, Cycladic blueschist belt, Greece. International Journal of Earth Sciences 105 (7), 1923–40, doi: 10.1007/s00531-015-1258-z.CrossRefGoogle Scholar
Hodges, K. V. & Spear, F. S. 1982. Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist 67, 1118–34.Google Scholar
Holdaway, M. J. 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85 (7–8), 881–92, doi: 10.2138/am-2000-0701.CrossRefGoogle Scholar
Holland, T. & Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116 (4), 433–47, doi: 10.1007/BF00310910.CrossRefGoogle Scholar
Hora, J. M., Kronz, A., Möller-McNett, S. & Wörner, G. 2013. An Excel-based tool for evaluating and visualizing geothermobarometry data. Computers & Geosciences 56, 178–85, doi: 10.1016/j.cageo.2013.02.008.CrossRefGoogle Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211 (1–2), 4769, doi: 10.1016/j.chemgeo.2004.06.017.CrossRefGoogle Scholar
Klein, T., Craddock, J. P. & Zulauf, G. 2013. Constraints on the geodynamical evolution of Crete: insights from illite crystallinity, Raman spectroscopy and calcite twinning above and below the ‘Cretan detachment’. International Journal of Earth Sciences 102 (1), 139–82, doi: 10.1007/s00531-012-0781-4.CrossRefGoogle Scholar
Kneuker, T., Dörr, W., Petschick, R. & Zulauf, G. 2015. Upper crustal emplacement and deformation of granitoids inside the Uppermost Unit of the Cretan nappe stack: constraints from U-Pb zircon dating, microfabrics and paleostress analyses. International Journal of Earth Sciences 104 (2), 351–67, doi: 10.1007/s00531-014-1088-4.CrossRefGoogle Scholar
Koepke, J. & Seidel, E. 1984. Oberkretazisches kristallin an der basis von ophiolithen der südägäis: charakterisierung der metamorphose-fazies. Tschermaks Mineralogische und Petrographische Mitteilungen 33 (4), 263–86, doi: 10.1007/BF01082673.CrossRefGoogle Scholar
Koepke, J., Seidel, E. & Kreuzer, H. 2002. Ophiolites on the southern Aegean islands Crete, Karpathos and Rhodes: composition, geochronology and position within the ophiolite belts of the Eastern Mediterranean. Lithos 65 (1–2), 183203, doi: 10.1016/S0024-4937(02)00165-2.CrossRefGoogle Scholar
Krahl, J., Herbart, H. & Katzenberger, S. 1982. Subdivision of the allochthonous ‘ophiolites’-bearing formation upon the Pindos Group, southwestern part of central Crete, Greece. In Proceedings of the International Symposium on the Hellenic Arc and Trench (HEAT), April 8–10, 1981, Athens, Volume 1, pp. 324–341. Αθήνα [Athens]: Εθνικό Μετσόβιο Πολυτεχνείο [Ethnikó Metsóvio Polytechneío].Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68 (1–2), 277–79.Google Scholar
Kruhl, J. H. 1996. Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology 14 (5), 581–9, doi: 10.1046/j.1525-1314.1996.00413.x.CrossRefGoogle Scholar
Langosch, A. 1999. Petrologie der Plutonischen Gesteine im Oberkretazischen Hochtemperaturkrisallin der Insel Kreta. Marburg: Tectum, 201 pp.Google Scholar
Langosch, A., Seidel, E., Stosch, H.-G. & Okrusch, M. 2000. Intrusive rocks in the ophiolitic mélange of Crete – Witnesses to a Late Cretaceous thermal event of enigmatic geological position. Contributions to Mineralogy and Petrology 139 (3), 339–55, doi: 10.1007/s004100000136.CrossRefGoogle Scholar
Leake, B. E. 1978. Nomenclature of amphiboles. American Mineralogist 63 (11–12), 1023–52.Google Scholar
Liati, A., Gebauer, D. & Fanning, C. M. 2004. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U–Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology 207 (3–4), 171–88, doi: 10.1016/j.chemgeo.2004.02.010.CrossRefGoogle Scholar
Liou, J. G., Maruyama, S. & Cho, M. 1987. Very low-grade metamorphism of volcanic and volcaniclastic rocks—mineral assemblages and mineral facies. In Low Temperature Metamorphism (ed. Frey, M.), pp. 59113. Glasgow: Blackie and Son.Google Scholar
Lippolt, H. J. & Baranyi, I. 1976. Oberkretazische Biotit- und Gesteinsalter aus Kreta. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 7, 405–14.Google Scholar
Ludwig, K. R. 1980. Calculation of uncertainties of U-Pb isotope data. Earth and Planetary Science Letters 46 (2), 212–20, doi: 10.1016/0012-821X(80)90007-2.CrossRefGoogle Scholar
Ludwig, K. R. 2012. User's Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 5, 75 pp.Google Scholar
Martha, S. O., Dörr, W., Gerdes, A., Krahl, J., Linckens, J. & Zulauf, G. 2017. The tectonometamorphic and magmatic evolution of the Uppermost Unit in central Crete (Melambes area): constraints on a Late Cretaceous magmatic arc in the Internal Hellenides (Greece). Gondwana Research 48, 5071, doi: 10.1016/j.gr.2017.04.004.CrossRefGoogle Scholar
Martha, S. O., Dörr, W., Gerdes, A., Petschick, R., Schastok, J., Xypolias, P. & Zulauf, G. 2016. New structural and U–Pb zircon data from Anafi crystalline basement (Cyclades, Greece): constraints on the evolution of a Late Cretaceous magmatic arc in the Internal Hellenides. International Journal of Earth Sciences 105 (7), 2031–60, doi: 10.1007/s00531-016-1346-8.CrossRefGoogle Scholar
Massonne, H.-J. & Schreyer, W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology 96 (2), 212–24, doi: 10.1007/BF00375235.CrossRefGoogle Scholar
Okay, A. I. 2008. Geology of Turkey: a synopsis. Anschnitt 21, 1942.Google Scholar
Palamakumbura, R. N., Robertson, A. H. F. & Dixon, J. E. 2013. Geochemical, sedimentary and micropaleontological evidence for a late Maastrichtian oceanic seamount within the Pindos Ocean (Arvi Unit, S Crete, Greece). Tectonophysics 595596, 250–62, doi: 10.1016/j.tecto.2012.04.019.CrossRefGoogle Scholar
Patzak, M., Okrusch, M. & Kreuzer, H. 1994. The Akrotiri unit on the island of Tinos, Cyclades, Greece: witness to a lost terrane of Late Cretaceous age. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 194, 211–52.Google Scholar
Perchuk, L. L. & Lavrent'eva, I. V. 1983. Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In Kinetics and Equilibrium in Mineral Reactions (ed. Saxena, S. K.), pp. 199–39. New York: Springer.CrossRefGoogle Scholar
Rahl, J. M., Anderson, K. M., Brandon, M. T. & Fassoulas, C. 2005. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters 240 (2), 339–54, doi: 10.1016/j.epsl.2005.09.055.CrossRefGoogle Scholar
Reinecke, T., Altherr, R., Hartung, B., Hatzipanagiotou, K., Kreuzer, H., Harre, W., Klein, H., Keller, J., Geenen, E. & Böger, H. 1982. Remnants of a Late Cretaceous high temperature belt on the island of Anafi (Cyclades, Greece). Neues Jahrbuch für Mineralogie, Abhandlungen 145 (2), 157–82.Google Scholar
Ridolfi, F. & Renzulli, A. 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology 163 (5), 877–95, doi: 10.1007/s00410-011-0704-6.CrossRefGoogle Scholar
Robert, U. & Bonneau, M. 1982. Les basalts des nappes du Pinde et d'Arvi et leur signification dans l’évolution géodynamique de la Méditerrannée orientale. Annales Géologiques des Pays Helléniques 31, 373408.Google Scholar
Seidel, E., Kreuzer, H. & Harre, W. 1982. A Late Oligocene/Early Miocene high pressure belt in the external Hellenides. Geologisches Jahrbuch, Reihe E 23, 165206.Google Scholar
Seidel, E., Okrusch, M., Kreuzer, H., Raschka, H. & Harre, W. 1976. Eo-Alpine metamorphism in the Uppermost Unit of the Cretan nappe system – petrology and geochronology. Part 1. The Léndas area (Asteroúsia Mountains). Contributions to Mineralogy and Petrology 57 (3), 259–75.Google Scholar
Seidel, E., Okrusch, M., Kreuzer, H., Raschka, H. & Harre, W. 1981. Eo-Alpine metamorphism in the Uppermost Unit of the Cretan nappe system – petrology and geochronology. Part 2. Synopsis of high-temperature metamorphics and associated ophiolites. Contributions to Mineralogy and Petrology 76 (3), 351–61, doi: 10.1007/BF00375462.CrossRefGoogle Scholar
Spear, F. S. & Cheney, J. T. 1989. A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O. Contributions to Mineralogy and Petrology 101 (2), 149–64, doi: 10.1007/BF00375302.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26 (2), 207–21, doi: 10.1016/0012-821X(75)90088-6.CrossRefGoogle Scholar
Tataris, A. 1964. Έπι τής παρουσίας τής ζώνης ’Ωλονού - Πίνδου είς τήν περιοχήν Σύμης - Βιάννου (άνατ. Κρήτης) και τής ήλικίας τών σπιλιτών της [The Olonos-Pindos-Zone in the Symi-Viannos area (eastern Crete) and the age of spilites of this zone]. Πρακτικά της Α καδημίας Α θηνών [Praktika tis Akadimias Athinon] 39, 298314.Google Scholar
Theye, T., Seidel, E. & Vidal, O. 1992. Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece. European Journal of Mineralogy 4 (3), 487508, doi: 10.1127/ejm/4/3/0487.CrossRefGoogle Scholar
Thompson, A. B. 1976. Mineral reactions in pelitic rocks: I. Prediction of P–T–X(Fe–Mg) phase relations. American Journal of Science 276 (4), 401–24, doi: 10.2475/ajs.276.4.401.CrossRefGoogle Scholar
Thomson, S. N., Stöckhert, B. & Brix, M. R. 1998. Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: implications for the speed of tectonic processes. Geology 26 (3), 259–62, doi: 10.1130/0091-7613(1998)026<0259:TOTHPM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Thomson, S. N., Stöckhert, B. & Brix, M. R. 1999. Miocene high-pressure metamorphic rocks of Crete, Greece: rapid exhumation by buoyant escape. In Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (eds Ring, U., Brandon, M. T., Lister, G. S. & Willett, S. D.), pp. 87107. Geological Society, London, Special Publication no. 154, doi: 10.1144/GSL.SP.1999.154.01.04.Google Scholar
Thomson, S. N., Stöckhert, B., Rauche, H. & Brix, M. R. 1998. Apatite fission-track thermochronology of the Uppermost Tectonic Unit of Crete, Greece: implications for the post-Eocene tectonic evolution of the Hellenic Subduction System. In Advances in Fission-Track Geochronology (eds van den Haute, P. & Corte, F. de), pp. 187205. Dordrecht: Springer. Solid Earth Sciences Library no. 10.CrossRefGoogle Scholar
Thorbecke, G. 1987. Die Zonengliederung der Ägäischen Helleniden und Westlichen Tauriden. Wien: Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 161 pp.Google Scholar
Tortorici, L., Catalano, S., Cirrincione, R. & Tortorici, G. 2012. The Cretan ophiolite-bearing mélange (Greece): a remnant of Alpine accretionary wedge. Tectonophysics 568569, 320–34, doi: 10.1016/j.tecto.2011.08.022.CrossRefGoogle Scholar
Velde, B. 1965. Phengite micas; synthesis, stability, and natural occurrence. American Journal of Science 263 (10), 886913, doi: 10.2475/ajs.263.10.886.CrossRefGoogle Scholar
Vidakis, M. 1993. Γεωλογικός χάρτης της Ελλάδος 1:50.000. Φύλλο Ιεράπετρα [Geological map of Greece 1:50,000. Ierapetra sheet]. Αθήνα [Athens]: Ινστιτούτο γεωλογικών και μεταλλεύτικων έρευνων [Institute of Geology and Mineral Exploration].Google Scholar
von Quadt, A., Peytcheva, I., Heinrich, C. A., Cvetković, V. & Banjesević, M. 2007. Upper Cretaceous magmatic evolution and related Cu–Au mineralization in Bulgaria and Serbia. In Digging Deeper. Proceedings of the Ninth Biennial SGA Meeting, Dublin 2007 (ed. Andrew, C. J.), pp. 861–4. Dublin: Irish Association for Economic Geology.Google Scholar
Zulauf, G., Kowalczyk, G., Krahl, J., Petschick, R. & Schwanz, S. 2002. The tectonometamorphic evolution of high-pressure low-temperature metamorphic rocks of eastern Crete, Greece: constraints from microfabrics, strain, illite crystallinity and paleodifferential stress. Journal of Structural Geology 24 (11), 1805–28, doi: 10.1016/S0191-8141(01)00168-7.CrossRefGoogle Scholar
Supplementary material: PDF

Martha et al. supplementary material

Table S1

Download Martha et al. supplementary material(PDF)
PDF 282.1 KB
Supplementary material: PDF

Martha et al. supplementary material

Table S2

Download Martha et al. supplementary material(PDF)
PDF 263.7 KB
Supplementary material: PDF

Martha et al. supplementary material

Table S3

Download Martha et al. supplementary material(PDF)
PDF 108.3 KB
Supplementary material: PDF

Martha et al. supplementary material

Table S4

Download Martha et al. supplementary material(PDF)
PDF 280 KB
Supplementary material: PDF

Martha et al. supplementary material

Table S5

Download Martha et al. supplementary material(PDF)
PDF 264.1 KB
Supplementary material: PDF

Martha et al. supplementary material

Table S6

Download Martha et al. supplementary material(PDF)
PDF 298.5 KB