Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T02:50:07.274Z Has data issue: false hasContentIssue false

Techniques for quantitative stratigraphic correlation: a review and annotated bibliography

Published online by Cambridge University Press:  01 May 2009

J. C. Tipper
Affiliation:
Department of Geology, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601 Australia

Abstract

The development of techniques for quantitative stratigraphic correlation has tended to outstrip their acceptance by practising stratigraphers. To make these techniques more readily accessible and to encourage their use, this paper presents a brief, general review of the problem of quantitative stratigraphic correlation and then shows how, using a natural framework for stratigraphic correlation, the stratigraphic time-series, there can be seen an orderly pattern among them. The annotated bibliography, of almost 400 articles, includes a majority of those references concerned with quantitative stratigraphic correlation, in whatever sense: the scheme of annotation provides a straightforward, albeit subjective indication of the general thrust of each article.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agterberg, F. P. 1982 a. IGCP Project 148: Background, objectives, and impact. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 14. Chichester: Wiley. (REV.)Google Scholar
Agterberg, F. P. 1982 b. Recent developments in geomathematics. Geo-Processing 2, 132. (REV.)Google Scholar
Agterberg, F. P. 1984. Binomial and trinomial models in quantitative biostratigraphy. Computers and Geosciences 10, 3141. (REV; 1C; 3B; 4A; 5C; 6J; 7B.)CrossRefGoogle Scholar
Agterberg, F. P. 1985 a. Quantitative stratigraphic correlation techniques – IGCP Project 148. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 316. Dordrecht: Reidel. (REV.)Google Scholar
Agterberg, F. P. 1985 b. Methods of ranking biostratigraphic events. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 161–94. Dordrecht: Reidel. (REV; IC; 3B; 4A; 5C; 6J; 7B.)Google Scholar
Agterberg, F. P. 1985 c. Methods of scaling biostratigraphic events. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 195241. Dordrecht: Reidel. (REV; IC; 3B; 4A; 5C; 6J; 7B.)Google Scholar
Agterberg, F. P. 1985 d. Normality testing and comparison of RASC to Unitary Associations method. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 243–62. Dordrecht: Reidel. (I C; 2B; 3B; 4A; 5B C; 6H J; 7A B.)Google Scholar
Agterberg, F. P. & Gradstein, F. M. 1980. A statistical model for the clustering of biostratigraphic events. 26th International Geological Congress, Abstracts 2, 841. (ABS.).Google Scholar
Agterberg, F. P. & Gradstein, F. M. 1981. Workshop on quantitative stratigraphic correlation techniques, Ottawa, February 1980. Mathematical Geology 13, 8191. (REV.)CrossRefGoogle Scholar
Agterberg, F. P. & Gradstein, F. M. 1983. System of interactive computer programs for quantitative stratigraphic correlation. Geological Survey of Canada, Paper 83–1 A, pp. 83–7. 2B; 3B; 4A; 5C; 6B J; 7B.Google Scholar
Agterberg, F. P., Gradstein, F. M., Lew, S. N. & Thomas, F. C. 1985. Nine data bases with applications of ranking and scaling of stratigraphic events. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 473564. Dordrecht: Reidel. (Data bases used by participants in IGCP project 148.)Google Scholar
Agterberg, F. P. & Nel, L. D. 1982 a. Algorithms for the ranking of stratigraphic events. Computers and Geosciences 8, 6990. (1 C; 3B; 4A; 5C E; 6J; 7B.)CrossRefGoogle Scholar
Agterberg, F. P. & Nel, L. D. 1982 b. Algorithms for the scaling of stratigraphic events. Computers and Geosciences 8, 163–89. (1 C; 3B; 4A; 5C E; 6J; 7B.)CrossRefGoogle Scholar
Agterberg, F. P., Oliver, J., Lew, S. N., Gradstein, F. M. & Williamson, M. A. 1985. CASC FORTRAN IV interactive computer program for correlation and scaling in time of biostratigraphic events. Geological Survey of Canada, Open File Report 1179, 139 pp. (1C; 2B; 3B; 4A; 5C; 6B J; 7B.)Google Scholar
Anderson, R. Y. 1967. Sedimentary laminations in time-series study. In Computer Applications in the Earth Sciences: Colloquium on Time-Series Analysis (ed. Merriam, D. F.). Kansas Geological Survey, Computer Contribution 18, 6872. (1 B; 2D; 3A; 4C D; 5A; 6C E G; 7A.)Google Scholar
Anderson, R. Y. & Kirkland, D. W. 1966. Intrabasin varve correlation. Geological Society of America, Bulletin 77, 241–56. (1 B; 3A; 4D; 5A; 6C E G; 7A.)CrossRefGoogle Scholar
Anderson, R. Y. & Koopmans, L. H. 1969. Statistical analysis of the Rita Blanca varve time-series. Geological Society of America, Memoir 113, 5975. (1 B; 2D; 3 B; 4D; 5A; 6A C E; 7A; cross-correlation within single sections.)Google Scholar
Anstey, N. A. 1964. Correlation techniques – a review. Geophysical Prospecting 12, 355–82. (1 D; 3A; 4C D; 5A; 6C E G; 7A; a revised version of the same paper is in Journal of the Canadian Society of Exploration Geophysicists (1966) 2, 55–82.)CrossRefGoogle Scholar
Bailey, B. H. & De Crespo, M. 1981. Computer sand counting and curve squaring. Society of Professional Well Log Analysts, 22nd Annual Logging Symposium, Transactions, J1–J49. (1D; 2B; 3B; 4CD; 5A; 6A; 7A.)Google Scholar
Barron, J. A., Nigrini, C. A., Pujos, A., Saito, T., Theyer, F., Thomas, E. & Weinreich, N. 1985. Synthesis of biostratigraphy, Central Equatorial Pacific, Deep Sea Drilling Project Leg 85: refinement of Oligocene to Quaternary biochronology. Initial Reports of the Deep Sea Drilling Project 85, 905–34. (1 C; 3 B; 4A; 5C; 6J; 7A.)CrossRefGoogle Scholar
Baumgartner, P. O. 1981. EURORAD II, 1980 – Second European meeting of radiolarian palaeontologists: current research on Cenozoic and Mesozoic radiolarians. Eclogae Geologicae Helvetiae 74, 10441049. (1 C; 2 B; 3B; 4A; 5B C; 6H; 7A.)Google Scholar
Baumgartner, P. O. 1984 a. Comparison of unitary associations and probabilistic ranking and scaling as applied to Mesozoic radiolarians. Computers and Geosciences 10, 167–83. (1C; 2B; 3B; 4A; 5B; 6H; 7A B.)CrossRefGoogle Scholar
Baumgartner, P. O. 1984 b. A Middle Jurassic–Early Cretaceous low-latitude radiolarian zonation based on Unitary Associations and age of Tethyan radiolaritees. Eclogae Geologicae Helvetiae 77, 729837. (1C; 2B; 3B; 4A; 5BC; 6H; 7A.)Google Scholar
Baumgartner, P. O., De Wever, P. & Kocher, R. 1980. Correlation of Tethyan Late Jurassic–Early Cretaceous radiolarian events. Cahiers de Micropaléontologie 2, 2372. (1C; 2B; 3B; 4A; 5BC; 6H; 7A.)Google Scholar
Berger, W. H. 1971. Pleistocene deep-sea stratigraphy: statistical study of correlation by faunal variation. Journal of Foraminiferal Research 1, 178–86. (1 C; 3A; 4B; 5B; 6C E G; 7A.)CrossRefGoogle Scholar
Bernabo, J. C. 1981. Quantitative estimates of temperature changes over the last 2700 years in Michigan based on pollen data. Quaternary Research 15, 143–59. (1 C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Binford, M. W. 1982. Ecological history of Lake Valencia, Venezuela: interpretation of animal microfossils and some chemical, physical, and geological features. Ecological Monographs 52, 307–33. (1 C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Bird, S. O. 1967. The binomial distribution applied to the percentage method of stratigraphic correlation. Geological Society of America, Bulletin 78, 1507–14. (1D; 3B; 4A; 5B; 7B; concerned not with stratigraphic time-series, but with the relative dating of samples by the Lyellian method.)CrossRefGoogle Scholar
Birks, H. H. & Mathewes, R. W. 1978. Studies in the vegetational history of Scotland. V. Late Devensian and early Flandrian pollen and macrofossil stratigraphy at Abernethy Forest, Inverness-shire. New Phytologist 80, 455–84. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Birks, H. J. B. 1973. Past and Present Vegetation of the Isle of Skye. Cambridge: Cambridge University Press, 415 pp. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Birks, H. J. B. 1974. Numerical zonations of Flandrian pollen data. New Phytologist 73, 351–58. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Birks, H. J. B. 1976. Late-Wisconsinan vegetational history at Wolf Creek, Central Minnesota. Ecological Monographs 46, 395429. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Birks, H. J. B. 1981 a. Long-distance pollen in Late Wisconsin sediments of Minnesota, U.S.A.: a quantitative analysis. New Phytologist 87, 630–61. (Occurrences of pollen treated as point processes.)CrossRefGoogle Scholar
Birks, H. J. B. 1981 b. Late Wisconsin vegetational and climatic history at Kylen Lake, northeastern Minnesota. Quaternary Research 16, 322–55. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Birks, H. J. B. 1986. Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.), pp. 743–74. Chichester: Wiley. (REV; 1C; 2B; 3B; 5B; 6A B; 7A.)Google Scholar
Birks, H. J. B. & Berglund, B. E. 1979. Holocene pollen stratigraphy of southern Sweden: a reappraisal using numerical methods. Boreas 8, 257–79. (1C; 2B; 3B; 4D; 5B; 6A B J; 7A.)CrossRefGoogle Scholar
Birks, H. J. B. & Birks, H. H. 1980. Quaternary Palaeoecology. London: Arnold, 289 pp. (1C; 2B; 3B; 4D; 5B; 6A J; 7A.)Google Scholar
Birks, H. J. B. & Gordon, A. D. 1985. Numerical Methods in Quaternary Pollen Analysis. London: Academic Press, 317 pp. (REV.)Google Scholar
Birks, H. J. B. & Madsden, B. J. 1979. Flandrian vegetational history of Little Loch Roag, Isle of Lewis, Scotland. Journal of Ecology 67, 825–42. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Björck, B. 1981. A stratigraphic study of Late Weichselian deglaciation, shore displacement and vegetation history in south-eastern Sweden. Fossils and Strata 14, 193. (1C; 3B; 4D; 5B; 6B J; 7A.)CrossRefGoogle Scholar
Blank, R. G. 1977. Correlation of Cenozoic deep sea sediments of the equatorial Pacific Ocean: an example of a new chronostratigraphic system of measurement. Dissertation Abstracts 38, 2583B2584B. (ABS.)Google Scholar
Blank, R. G. 1979. Applications of probabilistic biostratigraphy to chronostratigraphy. Journal of Geology 87, 647–70. (1C; 3B; 4A; 5C; 6J; 7B.)CrossRefGoogle Scholar
Blank, R. G. 1984. Comparison of two binomial models in probabilistic biostratigraphy. Computers and Geosciences 10, 5967. (1C; 2B; 3B; 4A; 5C; 6J; 7B.)CrossRefGoogle Scholar
Blank, R. G. & Ellis, C. H. 1980. Applications of probable range concept to biostratigraphy. American Association of Petroleum Geologists, Bulletin 64, 677. (ABS.)Google Scholar
Blank, R. G. & Ellis, C. H. 1982. The probable range concept applied to the biostratigraphy of marine microfossils. Journal of Geology 90, 415–33. (1C; 3B; 4A; 5C; 6J; 7B.)CrossRefGoogle Scholar
Blank, R. G. & Worsley, T. R. 1976. Quantitative correlation of Cenozoic deep-sea sediments of the Pacific Ocean. Geological Society of America, Abstracts with Programs 8, 782–83. (ABS.)Google Scholar
Bonham-Carter, G. F., Gradstein, F. M. & D'iorio, M. A. 1986. Distribution of Cenozoic foraminifera from the northwestern Atlantic margin analyzed by Correspondence Analysis. Computers and Geosciences 12, 621–35. (1C; 2B; 3B; 4A; 5B; 6B; 7B.)CrossRefGoogle Scholar
Boulter, M. C. & Hubbard, R. N. L. B. 1982. Objective paleoecological and biostratigraphic interpretation of Tertiary palynological data by multivariate statistical analysis. Palynology 6, 5568. (1C; 2B; 3B; 4D; 5B; 6A B; 7A.)CrossRefGoogle Scholar
Bretsky, P. W. & Klofak, S. M. 1985. Margin to craton expansion of Late Ordovician benthic marine invertebrates. Science 227, 1469–71. (1C; 3B; 4A; 5C; 6J; 7A.)CrossRefGoogle ScholarPubMed
Brinkmann, R. 1929. Statistisch–biostratigraphische Untersuchungen an Mitteljurassischen Ammoniten über Artbegriff und Stammesentwicklung. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Neue Folge 13 (3), 249 pp. (1C; 2BC; 3B; 5B; 6A B; 7B.)Google Scholar
Brockman, G. F. 1975. Stratigraphic correlation. Science 190, 1116–17. (7 B.)CrossRefGoogle Scholar
Brower, J. C. 1981. Quantitative biostratigraphy, 1830–1980. In Computer Applications in the Earth Sciences (ed. Merriam, D. F.), pp. 63103. New York: Plenum. (REV.)CrossRefGoogle Scholar
Brower, J. C. 1984. The relative biostratigraphic values of fossils. Computers and Geosciences 10, 111–31. (REV; 1C; 3B; 4A; 5B D; 6B; 7A).CrossRefGoogle Scholar
Brower, J. C. 1985 a. The index fossil concept and its application to quantitative biostratigraphy. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 4364. Dordrecht: Reidel. (REV; 1C; 3B; 4A; 5B D; 6B; 7A.)Google Scholar
Brower, J. C. 1985 b. Multivariate analysis of assemblage zones. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 6594. Dordrecht: Reidel. (REV; 1C; 2B; 3B; 4A; 5B D; 6D F H; 7A.)Google Scholar
Brower, J. C. 1985 c. Archaeological seriation of an original data matrix. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 95108. Dordrecht: Reidel. (REV; 1C; 3B; 4A; 6J; 7A.)Google Scholar
Brower, J. C. 1985 d. An exercise in quantitative biostratigraphy. The Compass 62, 194204. (REV; 1C; 3B; 4A; 5CE; 6J; 7B.)Google Scholar
Brower, J. C. & Burroughs, W. A. 1982. A simple method for quantitative biostratigraphy. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 6183. Chichester: Wiley. (3B; 4A; 6J; 7A.)Google Scholar
Brower, J. C. & Bussey, D. T. 1985. A comparison of five quantitative techniques for biostratigraphy. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 279306. Dordrecht: Reidel. (REV.)Google Scholar
Brower, J. C. & Millendorf, S. A. 1978. Biostratigraphic correlation within IGCP Project 148. Computers and Geosciences 4, 217–20. (REV.)CrossRefGoogle Scholar
Brower, J. C., Millendorf, S. A. & Dyman, T. S. 1978. Methods for the quantification of assemblage zones based on multivariate analysis of weighted and unweighted data. Computers and Geosciences 4, 221–27. (1C; 2B; 3B; 4A; 5B D; 6D F H; 7A.)CrossRefGoogle Scholar
Brubaker, L. B., Garfinkel, H. L. & Edwards, M. E. 1983. A late Wisconsin and Holocene vegetation history from the central Brooks Range: implications for Alaskan palaeoecology. Quaternary Research 20, 194214. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Bukhnikashvili, A. V. 1972. The question of ‘mathematization’ of geology (a discussion). International Geology Review 14, 1200–8.CrossRefGoogle Scholar
Burnaby, T. P. 1953. A suggested alternative to the correlation coefficient for testing the significance of agreement between pairs of time series, and its application to geological data. Nature 172, 210–11. (I B C D; 3A; 4D; 5A; 6C E; 7A; although the proposed method is applicable to stratigraphic correlation, it is used here only to test the agreement between pairs of time-series.)CrossRefGoogle Scholar
Burns, K. L. 1975. Analysis of geological events. Mathematical Geology 7, 295321. (4A; 5E; 6J; 7A.)CrossRefGoogle Scholar
Burroughs, W. A. & Brower, J. C. 1982. SER, a FORTRAN program for the seriation of biostratigraphic data. Computers and Geosciences 8, 137–48. (3B; 4A; 6J; 7A.)CrossRefGoogle Scholar
Byramjee, R., Dupuy, M., Etienne, J., Fonck, J. M., De Jekhowsky, B., Leroy, F. & Sourisse, Cl. 1969. Exemples d'application. In Méthodes modernes de traitement de l'information géologique sur ordinateur (Chambre syndicale de la recherche et de la production du pétrole et du gaz naturel), pp. 51102. Paris: Éditions Technip. (1C D; 2B; 3A B; 4C D; 5A B; 6A D E; 7A B.)Google Scholar
Carbonnel, G. 1973. L'analyse de groupe en paléoécologie et en biostratigraphie. Archives des Sciences 26, 2367. (1C; 2B; 3B; 4A; 5B; 6D F H; 7A.)Google Scholar
Carimati, R., Marini, A. & Potenza, R. G. 1982. The mathematical formalization of the geological relations identifying the basic structure of a geological data bank. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 1318. Chichester: Wiley. (TH.)Google Scholar
Châteauneuf, J.-J. & Reyre, Y. 1974. Éléments de palynologie. Applications Géologiques. Orleans: J.-J. Châteauneuf, 345 pp. (REV.)Google Scholar
Cheetham, A. H. 1960. Molluscan assemblages from the marine middle Miocene of South Jutland and their environments, by Theodor Sorgenfrei. American Association of Petroleum Geologists, Bulletin 44, 1716–17. (3B; 4A; 5B; A discussion only of a similarity coefficient commonly used in quantitative biostratigraphy.)Google Scholar
Cheetham, A. H. & Deboo, P. B. 1963. A numerical index for biostratigraphic zonation in the mid-Tertiary of the Eastern Gulf. Gulf Coast Association of Geological Societies, Transactions 13, 139–47. (1C; 2B; 3B; 4A; 5B; 6A; 7A.)Google Scholar
Chen, H.-C. & Fang, J. H. 1986. A heuristic search method for optimal zonation of well logs. Mathematical Geology 18, 489500. (1 D; 2B; 3B; 4C D; 5A; 6A; 7B.)CrossRefGoogle Scholar
Christopher, R. A. 1978. Quantitative palynologie correlation of three Campanian and Maestrichtian sections (Upper Cretaceous) from the Atlantic coastal plain. Palynology 2, 127. (1C; 2B; 3B; 4A; 5B; 6A D E F; 7 A.)CrossRefGoogle Scholar
Cisne, J. L. & Chandlee, G. O. 1982. Taconic foreland basin graptolites: age zonation, depth zonation, and use in ecostratigraphic correlation. Lethaia 15, 343–63. (1C; 2D; 3B; 4B; 5C; 6B; 7A.)CrossRefGoogle Scholar
Cisne, J. L. & Rabe, B. D. 1978. Coenocorrelation: gradient analysis of fossil communities and its applications in stratigraphy. Lethaia 11, 341–64.CrossRefGoogle Scholar
Clark, R. M. 1985. A FORTRAN program for constrained sequence-slotting based on minimum combined path length. Computers and Geosciences 11, 605–17. (3B; 6D E J; 7A.)CrossRefGoogle Scholar
Clark, R. M. & Thompson, R. 1979. A new statistical approach to the alignment of time series. Royal Astronomical Society, Geophysical Journal 58, 593607. (1C; 3A; 4C D; 5A; 6E G; 7B.)CrossRefGoogle Scholar
Cockbain, A. E. 1966. An attempt to measure the relative biostratigraphic usefulness of fossils. Journal of Paleontology 40, 206–7. (5D.)Google Scholar
Cronin, T. M. 1981. Rates and possible causes of neotectonic vertical crustal movements of the emerged southeastern United States Atlantic Coastal Plain. Geological Society of America, Bulletin 92, 812–33. (1C; 2B; 3A; 4A; 5B; 6D F H; 7A.)2.0.CO;2>CrossRefGoogle Scholar
Cubitt, J. M. & Reyment, R. A. (ed.). 1982. Quantitative Stratigraphic Correlation. Chichester: Wiley, 301 pp. (Papers in this volume are drawn from the 26th International Geological Congress, and are referred to separately.)Google Scholar
Cwynar, L. C. 1982. A late–Quaternary vegetation history from Hanging Lake, Northern Yukon. Ecological Monographs 52, 124. (1C; 2B; 3B; 4D; 5B; 6A; 7A).CrossRefGoogle Scholar
Dale, M. B. & Walker, D. 1970. Information analysis of pollen diagrams, I. Pollen et Spores 12, 2137. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Daskam, R. 1964. Automated well log analysis and the evaluation of sandstone bodies in shale sequences. Colorado School of Mines, Quarterly 59, 517–36. (1D; 3A; 4CD; 5A; 6C E G; 7A.)Google Scholar
Davaud, E. 1979. Automatisation des corrélations biochronologiques: un exemple d'application de l'informatique à la résolution d'un problème naturaliste complexe. Départment de Géologie, Université de Genève, Publication spéciale, 48 pp. (2B; 3B; 4A; 5BC; 6B H; 7A.)Google Scholar
Davaud, E. 1980. Computerized ordering of biostratigraphic events and correlations. 26th International Geological Congress, Abstracts 2, 852. (ABS.)Google Scholar
Davaud, E. 1982. The automation of biochronological correlation. In Quantitative Stratigraphic Correlation, (ed. Cubitt, J. M., Reyment, R. A.), pp. 8599. Chichester: Wiley. (2B; 3B; 4A; 5B C; 6B H; 7A).Google Scholar
Davaud, E. & Guex, J. 1978. Traitement analytique ‘manuel’ et algorithmique de problèmes complexes de corrélations biochronologiques. Eclogae Geologicae Helvetiae 71, 581610. (1C; 2B; 3B; 4A; 5B; 6B H; 7A.)Google Scholar
Davies, G. R. & Ludlam, S. D. 1973. Origin of laminated and graded sediments, Middle Devonian of Western Canada. Geological Society of American, Bulletin 84, 3527–46. (1B; 3A; 4D; 5A; 6C E G; 7A.)2.0.CO;2>CrossRefGoogle Scholar
Davis, J. C. 1973. Statistics and Data Analysis in Geology. New York: Wiley, 550 pp. (6C G; includes a general discussion of time-series analysis in geology.)Google Scholar
Davis, J. C. & Sampson, R. J. 1967. FORTRAN II timetrend package for the IBM 1620 computer. Kansas Geological Survey, Computer Contribution 19, 28 pp. (1BCD; 3A; 4A C D; 6B C E; 7A.)Google Scholar
Davis, R. B., Bradstreet, T. E., Stuckenrath, R. Jr. & Borns, H. W. Jr 1975. Vegetation and associated environments during the past 14000 years near Moulton Pond, Maine. Quaternary Research 5, 435–65. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Davis, R. B. & Norton, S. A. 1978. Paleolimnologic studies of human impact on lakes in the United States, with emphasis on recent research in New England. Polskie Archiwum Hydrobiologii 25, 99115. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Day, R. B., Tucker, E. V. & Wood, L. A. 1987. A quantified approach to the lithostratigraphic correlation of site investigation borehole logs. Computers and Geosciences 13, 161–84. (1D; 2B; 3A; 4A; 5A; 6B; 7A.)CrossRefGoogle Scholar
Dean, W. E. Jr & Anderson, R. Y. 1967. Correlation of turbidite strata in the Pennsylvanian Haymond Formation, Marathon region, Texas. Journal of Geology 75, 5975. (1B; 3A; 4D; 5A; 6C EG; 7A.)CrossRefGoogle Scholar
Dean, W. E. Jr & Anderson, R. Y. 1974 a. Application of some correlation coefficient techniques to time-series analysis. Mathematical Geology 6, 363–72. (1B; 3A B; 4D; 5A; 6C EG; 7A.)CrossRefGoogle Scholar
Dean, W. E. Jr & Anderson, R. Y. 1974 b. Trace and minor element variations in the Permian Castile Formation, Delaware Basin, Texas and New Mexico, revealed by varve calibration. In Fourth Symposium on Salt (ed. Coogan, A. H.), 1, pp. 275–85. Cleveland, OH: Northern Ohio Geological Society. (1B; 3A; 4CD; 5A; 6CE; 7A; peripheral to the actual problem of stratigraphic correlation, although the techniques used are applicable there.)Google Scholar
Deboo, P. B. 1965. Biostratigraphic correlation of the type Shubuta Member of the Yazoo Clay and Red Bluff Clay with their equivalents in southwestern Alabama. Alabama Geological Survey, Bulletin 80, 84 pp. (1C; 2B; 3B; 4A; 5B; 6AB; 7A.)Google Scholar
De Jekhowsky, B. 1958. Méthodes d'utilisation stratigraphique des microfossiles organiques dans les problèmes pétroliers. Revue de l'Institut Français du Pétrole 13, 1391–418. (7B.)Google Scholar
De Jekhowsky, B. 1962. ‘Distance’ between populations in quantitative palynology and its use for stratigraphical purposes. Pollen et Spores 4, 354. (ABS.)Google Scholar
De Jekhowsky, B. 1963. La méthode des distances minimales, nouveau procédé quantitatif de corrélation stratigraphique; exemple d'application en palynologie. Revue de l'Institut Français du Pétrole 18, 629–53. (1C; 3B; 4D; 5B; 6D E; 7A; an extremely important reference, which contains one of the first examples of graphic correlation.)Google Scholar
De Jekhowsky, B., Montagutelli, J. & Combaz, A. 1964. Ordinateurs et palynologie. Revue de l'Institut Français du Pétrole 19, 473–81. (1C; 3B; 4D; 5B; 6DE; 7A.)Google Scholar
Delcourt, H. R., Delcourt, P. A. & Spiker, E. C. 1983. A 12000-year record of forest history from Cahaba Pond, St Clair County, Alabama. Ecology 64, 874–87. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Dienes, I. 1974. General formulation of the correlation problem and its solution in two special situations. Mathematical Geology 6, 7381. (TH; 1D; 3B; 4CD; 5A; 6B C E G; 7A.)CrossRefGoogle Scholar
Dienes, I. 1978 a. Methods of plotting temporal range charts and their application in age estimation. Computers and Geosciences 4, 269–72. (1C; 4A; 5E; 6J; 7A.)CrossRefGoogle Scholar
Dienes, I. 1978 b. Formalized stratigraphy: basic concepts and advantages. In Recent Advances in Geomathematics (ed. Merriam, D. F.), pp. 81–7. Oxford: Pergamon. (TH.)CrossRefGoogle Scholar
Dienes, I. 1980. [No title.] 26th International Geological Congress, Abstracts 2, 856. (ABS; see Dienes, 1982.)Google Scholar
Dienes, I. 1981. The establishment of optimal time scales and their use. Acta Geologica Academiae Scientiarum Hungaricae 24, 395412. (TH.)Google Scholar
Dienes, I. 1982. Formalized Eocene stratigraphy of Dorog Basin, Transdanubia, Hungary, and related areas. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 1942. Chichester: Wiley. (TH; 1C; 4A; 5CE; 6BJ; 7A.)Google Scholar
Dienes, I. 1983. Experience with comparison of different geological clocks. Acta Geologica Hungarica 26, 187–95. (5C; 6J.)Google Scholar
Dienes, I. & Kovács, L. B. 1979. Maximum transitive paths and their application to a geological problem: setting up stratigraphic units. In Survey of Mathematical Programming, Vol. 2. (ed. Prékopa, A.), pp. 441–54. Amsterdam: North-Holland. (3B; 4A; 6H; 7A; translation of Kovács and Dienes, 1976.)Google Scholar
Dienes, I. & Mann, C. J. 1977. Mathematical formalization of stratigraphic terminology. Mathematical Geology 9, 587603. (TH.)CrossRefGoogle Scholar
Dodson, J. R. 1972. Computer programs for the pollen analyst. Pollen et Spores 14, 455–65. (1C; 3B; 4D; 5B; 6DE; 7A.)Google Scholar
Doeven, P. H., Gradstein, F. M., Jackson, A., Agterberg, F. P., & Nel, L. D. 1982. A quantitative nannofossil range chart. Micropaleontology 28, 8592. (1C; 3B; 4A; 5B; 6J; 7B.)CrossRefGoogle Scholar
Drooger, C. W. 1974. The boundaries and limits of stratigraphy. Koninklijke Nederlandse Akadamie van Wetenschappen, Proceedings, Series B. 77, 159–76. (REV; TH.)Google Scholar
Duff, P. M. D., Hallam, A. & Walton, E. K. 1967. Cyclic Sedimentation. Amsterdam: Elsevier, 280 pp.Google Scholar
Dupuy, M. & Byramjee, R. 1968. Application des ordinateurs dans les études de géologie de production. In Les ordinateurs en géologie pétrolière et dans les études de production, pp. 157–73. Paris: Éditions Technip. (ID; 2B; 3A; 4CD; 5A; 6A B; 7A.)Google Scholar
Edwards, L. E. 1978. Range charts and no-space graphs. Computers and Geosciences 4, 247–55. (1C; 3B; 4A; 5BC; 6J; 7A.)CrossRefGoogle Scholar
Edwards, L. E. 1982 a. Numerical and semi-objective biostratigraphy: review and predictions. Third North American Paleontological Convention, Proceedings 1, 147152. (REV.)Google Scholar
Edwards, L. E. 1982 b. Quantitative biostratigraphy: the methods should suit the data. In Quantitative Stratigraphic Correlation, (ed. Cubitt, J. M., Reyment, R. A.), pp. 4560. Chichester: Wiley. (REV.)Google Scholar
Edwards, L. E. 1984. Insights on why graphic correlation (Shaw's method) works. Journal of Geology 92, 583–97. (1C; 3B; 4A; 5BC; 6J; 7A.)CrossRefGoogle Scholar
Edwards, L. E. 1985. Insights on why graphic correlation (Shaw's method) works: a reply. Journal of Geology 93, 507–9. (1C; 3B; 4A; 5BC; 6J; 7A.)CrossRefGoogle Scholar
Edwards, L. E. & Beaver, R. J. 1978. The use of a paired comparison model in ordering stratigraphic events. Mathematical Geology 10, 261–72. (1C; 3B; 4A; 5C; 6J; 7B.)CrossRefGoogle Scholar
Frederiksen, N. O. 1980. Paleogene sporomorphs from South Carolina and quantitative correlations with the Gulf Coast. Palynology 4, 125–79. (1C; 3B; 4ABD; 5BC; 6DE; 7A.)CrossRefGoogle Scholar
Ghose, B. K. 1982. Analysis of paleontologic time series and its application in stratigraphic correlation – a case study based on Orbulina data from DSDP samples. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 175231. Chichester: Wiley. (1C; 2D; 3A; 4D; 5B; 6A C EG; 7A.)Google Scholar
Ghose, B. K. 1984 a. STRECH: a subroutine for stretching time series and its use in stratigraphic correlation. Computers and Geosciences 10, 137–47. (1C; 3A; 4C D; 5A; 6CEG; 7A.)CrossRefGoogle Scholar
Ghose, B. K. 1984 b. New method for quantification of clastic sedimentary sequences in time series analysis. Computers and Geosciences 10, 149–58. (1D; 2D; 3A; 4B D; 5A; 6 CEG; 7A.)CrossRefGoogle Scholar
Gill, D. 1970. Application of a statistical zonation method to reservoir evaluation and digitized-log analysis. American Association of Petroleum Geologists, Bulletin 54, 719–29. (1D; 2B; 3A; 4CD; 5A; 6A; 7B.)Google Scholar
Goncharova, E. I. 1981. Structure of bedded formations in problems of stratigraphy. Soviet Geology and Geophysics 22 (8), 5967. (TH; 3B; 5E; 6B J; 7A.)Google Scholar
Gordon, A. D. 1973 a. Classification in the presence of constraints. Biometrics 29, 821–27. (1C; 2A; 3B; 4D; 6A; 7A.)CrossRefGoogle Scholar
Gordon, A. D. 1973 b. A sequence–comparison statistic and algorithm. Biometrika 60, 197200. (3B; 6D E F J; 7A; basic reference for the slotting method.)CrossRefGoogle Scholar
Gordon, A. D. 1980 a. SLOTSEQ: a FORTRAN IV program for comparing two sequences of observations. Computers and Geosciences 6, 720. (3B; 6D EJ; 7A.)CrossRefGoogle Scholar
Gordon, A. D. 1980 b. On the comparison of stratigraphically recorded measurements. 26th International Geological Congress, Abstracts 2, 860. (ABS.)Google Scholar
Gordon, A. D. 1980 c. Methods of constrained classification. In Analyse de données et informatique (ed. Amirchahy, M., Neel, D.), pp. 161–71. Le Chesnay: Institut National de Recherche en Informatique et en Automatique. (1C; 2B; 3B; 4C D; 5B; 6A; 7A.)Google Scholar
Gordon, A. D. 1981. Classification. London: Chapman and Hall, 193 pp. (REV; review of classificatory methods, in a pollen stratigraphic context.)Google Scholar
Gordon, A. D. 1982 a. On measuring and modelling the relationship between two stratigraphically recorded variables. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 242–48. Chichester: Wiley. (REV; 1C D; 2A B; 3B; 4C D; 6B; 7A; relevant to stratigraphic correlation only in that the methods are potentially applicable there.)Google Scholar
Gordon, A. D. 1982 b. An investigation of two sequence-comparison statistics. Australian Journal of Statistics 24, 332–42. (1C; 3A; 4CD; 5A; 6D E J; 7A.)CrossRefGoogle Scholar
Gordon, A. D. 1982 c. Numerical methods in Quaternary palaeoecology. V. Simultaneous graphical representation of the levels and taxa in a pollen diagram. Review of Palaeobotany and Palynology 37, 155–83. (1C; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Gordon, A. D. & Birks, H. J. B. 1972. Numerical methods in Quaternary palaeoecology. I. Zonation of pollen diagrams. New Phytologist 71, 961–79. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Gordon, A. D. & Birks, H. J. B. 1974. Numerical methods in Quaternary palaeoecology. II. Comparison of pollen diagrams. New Phytologist 73, 221–49. (1C; 2B; 3B; 4D; 5B; 6A D E F J; 7A.)CrossRefGoogle Scholar
Gordon, A. D. & Reyment, R. A. 1979. Slotting of borehole sequences. Mathematical Geology 11, 309–27. (3B; 5E; 6D E F J; 7A.)CrossRefGoogle Scholar
Gorin, G., Froidevaux, R. & Châteauneuf, J.-J. 1973. Informatique appliquée aux problèmes de datation par la palynologie. Archives des Sciences 26, 227–45. (1C; 3B; 4A; 5B.)Google Scholar
Gradstein, F. M. 1984. On stratigraphic normality. Computers and Geosciences 10, 4357. (1C; 3B; 4A; 5B C; 6J; 7B.)CrossRefGoogle Scholar
Gradstein, F. M. 1985 a. Stratigraphy and the fossil record. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 1739. Dordrecht: Reidel. (REV; 5B.)Google Scholar
Gradstein, F. M. 1985 b. Ranking and scaling in exploration micropaleontology. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 109–60. Dordrecht: Reidel. (1C; 2B; 3B; 4A; 5B; 6BJ; 7B.)Google Scholar
Gradstein, F. M. 1985 c. Unitary Associations and ranking of Jurassic radiolarians. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 263–78. Dordrecht: Reidel. (1C; 2B; 3B; 4A; 5BC; 6H J; 7A B.)Google Scholar
Gradstein, F. M. & Agterberg, F. P. 1979. Cenozoic continental margin foraminiferal stratigraphy – a statistical approach. West Virginia Geological Survey, Circular Series C15, 12–3. (ABS.)Google Scholar
Gradstein, F. M. & Agterberg, F. P. 1980. Application of statistical models in continental margin biostratigraphy. American Association of Petroleum Geologists, Bulletin 64, 713–14. (ABS.)Google Scholar
Gradstein, F. M. & Agterberg, F. P. 1982. Models of Cenozoic foraminiferal stratigraphy – northwestern Atlantic margin. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 119–73. Chichester: Wiley. (1C; 2B; 3B; 4A; 5B; 6B H; 7 B.)Google Scholar
Gradstein, F. M. & Agterberg, F. P. 1985. Quantitative correlation in exploration micropaleontology. In QuantitativeStratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 309–57. Dordrecht: Reidel. (1C; 2B; 3B; 4A; 5C; 6BJ; 7B.)Google Scholar
Gradstein, F. M., Agterberg, F. P., Brower, J. C. & Schwarzacher, W. (ed.) 1985. Quantitative Stratigraphy. Dordrecht: Reidel, 598 pp. (A collection, mainly of review papers: each of the papers is referred to separately.)Google Scholar
Gray, H. H. & Guennel, G. K. 1961. Elementary statistics applied to palynologic identification of coal beds. Micropaleontology 7, 101–6. (3B; 4D; 5B; concerned not with stratigraphic time-series, but with quantitative stratigraphic identification of samples.)CrossRefGoogle Scholar
Green, D. G. 1981. Time series and postglacial forest ecology. Quaternary Research 15, 265–77. (1C; 3A; 4D; 5B; 6A; discussion of some standard time-series approaches, including com paris on of univariate time-series from within one section.)CrossRefGoogle Scholar
Green, D. G. 1982. Fire and stability in the postglacial forests of southwest Nova Scotia. Journal of Biogeography 9, 2940. (1C; 3A; 4D; 5B; 6A.)CrossRefGoogle Scholar
Green, D. G. 1983. The ecological interpretation of fine resolution pollen records. New Phytologist 94, 459–77. (1 C; 2B C; 4D; 6A B.)CrossRefGoogle Scholar
Griffiths, C. M. 1982. A proposed geologically consistent segmentation and reassignment algorithm for petrophysical borehole logs. In Quantitative Stratigraphic Correlation, (ed. Cubitt, J. M., Reyment, R. A.), pp. 287–98. Chichester: Wiley. (1 D; 2B C; 3A B; 4C D; 5A; 6A; 7A.)Google Scholar
Grimm, E. C. 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335. (1 C; 2B; 3B; 4A; 5B; 6D F H; 7 A.)CrossRefGoogle Scholar
Grishkevich, V. F. 1982. Zone of vagueness in the stratigraphic correlation of deposits. Soviet Geology and Geophysics 23 (1), 5762. (TH; 1 C; 3B; 5A; 6B C F; 7B.)Google Scholar
Guberman, Sh. A. & Ovchinnikova, M. I. 1972. On machine correlation of the beds in a well cross section based on geophysical data. AN SSSR Bulletin, Physics of the Solid Earth 8, 185–90. (1 C; 3A; 5A; 6B C E G; 7 B.)Google Scholar
Guberman, Sh. A., Kalinina, Ye. Ye., Ovchinnikova, M. I. & Osipov, V. F. 1982. Computerized correlation of geophysical sections of boreholes. International Geology Review 24, 790–96. (1 D; 2B; 3A; 5A C; 6A B C E G; 7A B.)CrossRefGoogle Scholar
Guex, J. 1977. Une nouvelle méthode d'analyse biochronologique. Note préliminaire. Bulletin de la Société vaudoise des Sciences naturelles 73, 309–22. (2B; 3B; 4A; 5BC; 6H; 7A.)Google Scholar
Guex, J. 1978 a. Le Trias inférieur des Salt Ranges (Pakistan): problèmes biochronologiques. Eclogae Geologicae Helvetiae 71, 105–41. (1C; 2B; 3B; 4A; 5B C; 6H; 7A.)Google Scholar
Guex, J. 1978 b. Influence du confinement géographique des espèces fossiles sur l'élaboration d'échelles biochronologiques et sur les corrélations. Bulletin de la Société vaudoise des Sciences naturelles 74, 115–24. (1C; 2B; 3B; 4A; 5BC; 6B H; 7A.)Google Scholar
Guex, J. 1979. Terminologie et méthodes de la biostrati-graphie moderne: commentaires critiques et propositions. Bulletin de la Société vaudoise des Sciences naturelles 74, 169216. (REV.)Google Scholar
Guex, J. 1980 a. Calcul, caractérisation et identification des associations unitaires en biochronologie. Bulletin de la Société vaudoise des Sciences naturelles 75, 111–26. (1C; 2B; 3B; 4A; 5B C; 6H; 7A.)Google Scholar
Guex, J. 1980 b. Datations paleontologiques et graphes d'intervalle. In Regards sur la théorie des graphes (ed. Hansen, P., De Werra, D.), pp. 243–48. Proceedings of the Cerisy Colloquium. Presses Polytechniques Romandes. (1C; 2B; 3B; 4A; 5B C; 6H; 7A.)Google Scholar
Guex, J. 1981. Associations virtuelles et discontinuités dans la distribution des espèces fossiles: un exemple intéressant. Bulletin de la Société vaudoise des Sciences naturelles 75, 179–97. (1C; 2B; 3B; 4A; 5B C; 6H; 7A.)Google Scholar
Guex, J. 1982. Remarques sur l'origine de la dispersion biochronologique du nannoplancton calcaire paléogène de Californie et sur la détection des remaniéments. Bulletin de la Société vaudoise des Sciences naturelles 76, 197205. (1C; 2B; 3B; 4A; 5BC; 6H; 7A.)Google Scholar
Guex, J. 1984. Estimations numériques de la qualité de l'enregistrement fossile des espèces. Bulletin de la Société vaudoise des Sciences naturelles 77, 7989. (1C; 2B; 3B; 4A; 5BC; 6H; 7A; substantial correction to Guex 1982.)Google Scholar
Guex, J. & Davaud, E. 1982. Recherche automatique des associations unitaires en biochronologie. Bulletin de la Société vaudoise des Sciences naturelles 76, 5369. (1C; 2B; 3B; 4A; 5BC; 6H J; 7A.)Google Scholar
Guex, J. & Davaud, E. 1984. Unitary associations method: use of graph theory and computer algorithm. Computers and Geosciences 10, 6996. (1C; 2B; 3B; 4A; 5B C; 6H; 7A.)CrossRefGoogle Scholar
Haites, T. B. 1963. Perspective correlation. American Association of Petroleum Geologists, Bulletin 47, 553–74. (A method that assumes certain regularities of sedimentation patterns, and a paper that has had substantial influence on Russian work.)Google Scholar
Harbaugh, J. W. & Merriam, D. F. 1968. Computer Applications in Stratigraphic Analysis. New York: Wiley, 282 pp. (3A; 4A C D; 5A; 6C E; 7A.)Google Scholar
Harland, W. B. 1978. Geochronologic scales. In Contributions to the Geologic Time Scale (ed. Cohee, G. V., Glaessner, M. F., Hedberg, H. D.), pp. 932. Tulsa, OK: American Association of Petroleum Geologists. (TH; an extremely important paper on the meanings of correlation.)Google Scholar
Harper, C. W. Jr 1980 a. Technical comment on unfilledrange events in Edwards (1978). Computers and Geosciences 6, 467–68. (6J; 7A.)CrossRefGoogle Scholar
Harper, C. W. Jr 1980 b. Relative age inference in paleontology. Lethaia 13, 239–48. (6J; 7B.)CrossRefGoogle Scholar
Harper, C. W. Jr 1981. Inferring succession of fossils in time: the need for a quantitative and statistical approach. Journal of Paleontology 55, 442–52. (6J; 7B.)Google Scholar
Harper, C. W. Jr 1984. A FORTRAN IV program for comparing ranking algorithms in quantitative biostratigraphy. Computers and Geosciences 10, 329. (3B; 4A; 5C; 6J.)CrossRefGoogle Scholar
Harper, C. W. Jr & Crowley, K. D. 1985. Insights on why graphic correlation (Shaw's method) works: a discussion. Journal of Geology 93, 503–6. (1C; 3B; 4A; 5BC; 6J; 7A.)CrossRefGoogle Scholar
Hattori, I. 1985. Probabilistic aspects of micropaleontologic assemblage zones. Mathematical Geology 17, 167–75. (3B; 4A; 5B; 7B; concerned with recognition of assemblage zones in a probabilistic manner, and thus not with stratigraphic time-series.)CrossRefGoogle Scholar
Hawkins, D. M. 1976. FORTRAN IV program to segment multivariate sequences of data. Computers and Geosciences 1, 339–51. (1CD; 2B; 3B; 4CD; 5A; 6A; 7B.)CrossRefGoogle Scholar
Hawkins, D. M. 1984. A method for stratigraphic correlation of several boreholes. Mathematical Geology 16, 393406. (1D; 2B; 3B; 4D; 5A; 6B D E F H; 7B.)CrossRefGoogle Scholar
Hawkins, D. M. & Merriam, D. F. 1973. Optimal zonation of digitized sequential data. Mathematical Geology 5, 389–95. (1CD; 2B; 3A; 4CD; 5A; 6A; 7B.)CrossRefGoogle Scholar
Hawkins, D. M. & Merriam, D. F. 1974. Zonation of multivariate sequences of digitized geologic data. Mathematical Geology 6, 263–69. (1CD; 2B; 3B; 4CD; 5A; 6A; 7B.)CrossRefGoogle Scholar
Hawkins, D. M. & Merriam, D. F. 1975. Segmentation of discrete sequences of geologic data. Geological Society of America, Memoir 142, 311–5. (REV; 2B; 6A.)Google Scholar
Hawkins, D. M. & Ten Krooden, J. A. 1979 a. Zonation of sequences of heteroscedastic multivariate data. Computers and Geosciences 5, 189–94. (1CD; 2B; 3B; 4CD; 5A; 6A; 7B.)CrossRefGoogle Scholar
Hawkins, D. M. & Ten Krooden, J. A. 1979 b. A review of several methods of segmentation. In Geomathematical and Petrophysical Studies in Sedimentology (ed. Gill, D., Merriam, D. F.), pp. 117–26. Oxford: Pergamon. (REV; 2B; 3AB; 4CD; 5A; 6A; 7AB.)CrossRefGoogle Scholar
Hay, W. W. 1972 a. Implications of probabilistic stratigraphy. American Association of Petroleum Geologists, Bulletin 56, 623–24. (ABS.)Google Scholar
Hay, W. W. 1972 b. Probabilistic stratigraphy. Eclogae Geologicae Helvetiae 65, 255–66. (1C; 3B; 4A; 5B; 6J; 7B; A basic reference for this approach).Google Scholar
Hay, W. W. 1974. Implications of probabilistic stratigraphy for chronostratigraphy. Verhandlungen der Naturforschende Gesellschaft, Basel 84, 165–71. (5BC; 6J; 7B)Google Scholar
Hay, W. W. & Cepek, P. 1969. Nannofossils, probability, and biostratigraphic resolution. American Association of Petroleum Geologists, Bulletin 53, 721. (ABS.)Google Scholar
Hay, W. W. & Southam, J. R. 1978. Quantifying biostratigraphic correlation. Annual Review of Earth and Planetary Sciences 6, 353–75. (REV.)CrossRefGoogle Scholar
Hay, W. W. & Steinmetz, J. C. 1973. Probabilistic analysis of distribution of late Paleocene–early Eocene calcareous nannofossils. In Proceedings of Symposium on Calcareous Nannofossils (ed. Smith, L. A., Hardenbol, J.), pp. 5870. Houston: Gulf Coast Section, Society of Economic Paleontologists and Mineralogists. (1C; 3B; 4A; 5B; 6HJ; 7B.)Google Scholar
Hay, W. W. & Steinmetz, J. C. 1974. Effects of removal of data in probabilistic stratigraphic analysis. Geological Society of America, Abstracts with Programs 6, 363. (ABS.)Google Scholar
Hay, W. W. & Steinmetz, J. C. 1977. High reliability and usefulness in probabilistic stratigraphic analysis. Venezuela Direccion de Geologia, Boletin de Geologia, Publication Especial 7 (3), 1529–40. (2nd Congresso Latinoamericano de Geologia, Caracas, 1973). (1C; 3B; 4A; 5B; 6J; 7B.)Google Scholar
Hay, W. W. & Worsley, T. R. 1974. Probability instratigraphy. In Marine Plankton and Sediments Symposium, and Third Planktonic Conference (Kiel), Abstracts. Paris: International Council of Scientific Unions, 30. (ABS.)Google Scholar
Hazel, J. E. 1970. Binary coefficients and clustering in biostratigraphy. Geological Society of America, Bulletin 81, 3237–52. (1C; 2B; 3B; 4A; 5B; 6D FH; 7A.)CrossRefGoogle Scholar
Hazel, J. E. 1971. Ostracode biostratigraphy of the Yorktown Formation (upper Miocene and lower Pliocene) of Virginia and North Carolina. United States Geological Survey, Professional Paper 704, 13 pp. (1C D; 2B; 3B; 4A; 5B; 6DFH; 7A.)Google Scholar
Hazel, J. E. 1977. Use of certain multivariate and other techniques in assemblage zonal biostratigraphy: examples utilizing Cambrian, Cretaceous and Tertiary benthic invertebrates. In Concepts and Methods of Biostratigraphy, (ed. Kauffman, E. G., Hazel, J. E.), pp. 187212. Stroudsburg, PA: Dowden, Hutchinson & Ross. (1C; 2B; 3B; 4A; 5B; 6B D F H; 7A.)Google Scholar
Hazel, J. E., Mumma, M. D. & Huff, W. J. 1980. Ostracode biostratigraphy of the Lower Oligocene (Vicksburgian) of Mississippi and Alabama. Gulf Coast Association of Geological Societies, Transactions 30, 361401. (1C; 3B; 4A; 5B; 6J; 7A.)Google Scholar
Hedberg, H. D. 1976. International Stratigraphic Guide. New York: Wiley, 200 pp.Google Scholar
Heller, M., Gradstein, W. S., Gradstein, F. M. & Agterberg, F. P. 1983. RASC FORTRAN IV computer program for ranking and scaling of biostratigraphic events. Geological Survey of Canada, Open File Report 922, 54 pp. (1C; 2B; 3B; 4A; 5B; 6BJ; 7B.)Google Scholar
Henning, I. 1980. WELLCORR: a FORTRAN program for lithostratigraphic correlation of optional levels in large series of wells. 26th International Geological Congress, Abstracts 2, 862. (ABS.)Google Scholar
Hohn, M. E. 1978. Stratigraphic correlation by principal components: effects of missing data. Journal of Geology 86, 524–32. (1C; 3B; 4A; 5B; 6DFJ; 7B.)CrossRefGoogle Scholar
Hohn, M. E. 1982. Properties of composite sections constructed by least-squares. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 107–11. Chichester: Wiley. (1C; 2B; 3B; 4A; 5C; 6DFJ; 7B.)Google Scholar
Hohn, M. E. 1985. SAS program for quantitative stratigraphic correlation by principal components. Computers and Geosciences 11, 471–7. (1C; 3B; 4A; 5B; 6DFJ; 7B.)CrossRefGoogle Scholar
Howell, J. A. 1983. A FORTRAN 77 program for automatic stratigraphic correlation. Computers and Geosciences 9, 311–27. (1D; 3A; 4A; 5A; 6B C E G; 7A.)CrossRefGoogle Scholar
Hudson, C. B. & Agterberg, F. P. 1982. Paired comparison models in biostratigraphy. Mathematical Geology 14, 141–59. (1C; 3B; 4A; 5C; 6J; 7B.)CrossRefGoogle Scholar
Hughes, N. F. 1976. Palaeobiology of Angiosperm Origins. Cambridge: Cambridge University Press, 242 pp. (5C; 6J.)Google Scholar
Hughes, N. F. & Croxton, C. A. 1973. Palynologic correlation of the Dorset ‘Wealden’. Palaeontology 16, 567601. (5C; 6J.)Google Scholar
Hughes, N. F. & Moody-Stuart, J. C. 1969. A method of stratigraphic correlation using early Cretaceous miospores. Palaeontology 12, 84111. (5C; 6J.)Google Scholar
Hunt, T. G. & Birks, H. J. B. 1982. Devensian late-glacial vegetational history at Sea Mere, Norfolk. Journal of Biogeography 9, 517–38. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Jackson, A., Lew, S. N. & Agterberg, F. P. 1984. DISSPLA program for display of dendrograms from RASC output. Computers and Geosciences 10, 159–65. (Paper relevant only as an adjunct to Agterberg and Nel, 1982 a, b.)CrossRefGoogle Scholar
Jacobson, G. L. Jr 1979. The palaeoecology of White Pine (Pinus strobus) in Minnesota. Journal of Ecology 67, 697726. (1C; 2B; 3B; 4D; 5BC; 6A; 7A.)CrossRefGoogle Scholar
Jacobson, G. L. Jr & Grimm, E. C. 1986. A numerical analysis of Holocene forest and prairie vegetation in central Minnesota. Ecology 67, 958–66. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Jasko, T. 1978. Distance dependence of stratigraphic correlation: a Monte-Carlo study. In Recent Advances in Geomathematics, (ed. Merriam, D. F.), pp. 89105. Oxford: Pergamon. (TH; 7B.)CrossRefGoogle Scholar
Jasko, T. 1984. The first find: estimation of the precision of range zone boundaries. Computers and Geosciences 10, 133–36. (3A; 4A; 5BC; 6B; 7B.)CrossRefGoogle Scholar
Jatkar, S. A., Rushforth, S. R. & Brotherson, J. D. 1979. Diatom floristics and succession in a peat bog near Lily Lake, Summit County, Utah. Great Basin Naturalist 39, 1543. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Jeletzky, J. A. 1965. Is it possible to quantify biochronological correlation? Journal of Paleontology 39, 135–40.Google Scholar
Johnson, D. A. & Wick, B. J. 1982. Precision of correlation of radiolarian datum levels in the Middle Miocene, equatorial Pacific. Micropaleontology 28, 4358. (4A; 5C; 7B.)CrossRefGoogle Scholar
Johnson, J. G. 1979. Intent and reality in biostratigraphic zonation. Journal of Paleontology 53, 931–42.Google Scholar
Kemp, F. 1980. An algorithm for automatic dip computation. Computers and Geosciences 6, 193209. (1 D; 3A; 4D; 5A; 6C F G; 7A.)CrossRefGoogle Scholar
Kemp, F. 1982. An algorithm for the stratigraphic correlation of well logs. Mathematical Geology 14, 271–85. (ID; 3A; 4CD; 5A; 6CEG; 7A.)CrossRefGoogle Scholar
Kemp, W. C. & Eger, D. T. 1967. The relationships among sequences with applications to geological data. Journal of Geophysical Research 72, 739–51. (1C; 2D; 3A; 4D; 5AC; 6CEG; 7A.)CrossRefGoogle Scholar
Kendall, M. G. & Stuart, A. 1976. The Advanced Theory of Statistics, Vol. 3. London: Griffin, 585 pp.Google Scholar
Kershaw, A. P. 1970. A pollen diagram for Lake Euramoo, North-east Queensland, Australia. New Phytologist 69, 785805. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Kerzner, M. G. 1982. An analytical approach to detailed dip determination using frequency analysis. Society of Professional Well Log Analysts, 23rd Annual Logging Symposium, Transactions, J1–J17. (1D; 3A; 4D; 5A; 6B CDEG;7A.)Google Scholar
Kerzner, M. G. 1983. Formation dip determination – an artificial intelligence approach. The Log Analyst 24 (5), 1022. (1D; 3A; 4D; 5A; 6B C D E G; 7A.)Google Scholar
Kerzner, M. G. 1986. Image Processing in Well Log Analysis. Dordrecht: Reidel, 123 pp. (REV; ID; 2B; 3A; 4C D; 5A; 6A B C D E G; 7A.)CrossRefGoogle Scholar
Kerzner, M. G. & Frost, E. Jr 1984. Blocking – a new technique for well log interpretation. Journal of Petroleum Technology 36, 267–75. (1D; 2B; 3A; 4C D; 5 A; 6A; 7A.)CrossRefGoogle Scholar
Kocher, R. N. 1981. Biochronostratigraphische Untersuchungen Oberjurassischer Radiolarienführender Gesteine, insbesondere der Südalpen. Doctoral Dissertation, Eidgenössischen Technischen Hochschule, Zürich, 185 pp. (1C; 2B; 3B; 4A; 5B C; 6B H; 7A.)Google Scholar
Koopmans, L. H. 1967. A comparison of coherence and correlation as measures of association for time or spatially indexed data. In Computer Applications in the Earth Sciences: Colloquium on Time-Series Analysis (ed. Merriam, D. F.). Kansas Geological Survey, Computer Contribution 18, 14. (1B; 3A; 4CD; 5A; 6C E; 7A.)Google Scholar
Kovács, L. B. & Dienes, I. 1976. Maximum tranzitív utak és alkalmazásuk egy geológiai problémára: rétegtani egységek létrehozása. Alkalmazott Matematikai Lapok 2, 157–70. (3B; 4A; 6H; 7A; a translation of this paper is in Dienes and Kovács 1979.)Google Scholar
Kulinkovich, A. Y., Sokhranov, N. N. & Churinova, I. M. 1966. Utilization of digital computers to distinguish boundaries of beds and identify sandstones from electric log data. International Geology Review 8, 416–20. (1 D; 2B; 3A; 4C D; 5A; 6A; 7A.)CrossRefGoogle Scholar
Kuo, T.-B. & Startzman, R. A. 1987. Field-scale stratigraphic correlation using artificial intelligence. Geobyte 2, 30–5. (1D; 2B; 3A; 4CD; 5A; 6A D; 7A.)Google Scholar
Kwon, B.-D., Blakely, R. F. & Rudman, A. J. 1978. FORTRAN program for correlation of stratigraphic time series. Indiana Geological Survey, Occasional Paper 26, 50 pp. (1 D; 3A; 4C D; 5A; 6C E G; 7A.)Google Scholar
Kwon, B.-D. & Rudman, A. J. 1979. Correlation of geologic logs with spectral methods. Mathematical Geology 11, 373–90. (1D; 3A; 4CD; 5A; 6C E G; 7A.)CrossRefGoogle Scholar
Lanning, E. N. & Johnson, D. M. 1983. Automated identification of rock boundaries: an application of the Walsh transform to geophysical well log analysis. Geophysics 48, 197205. (1D; 2B; 3B; 4C D; 5A; 6A; 7A.)CrossRefGoogle Scholar
Leont'ev, G. I. 1972. An attempt at a synchronisation of old cyclically bedded sediments by the method of graphic connections. Lithology and Mineral Resources 7, 103–13. (1D; 2D; 3B; 4A D; 5A; 6B; 7A.)Google Scholar
Levine, P. A., Merriam, D. F. & Sneath, P. H. A. 1981. Segmentation of geological data using the Kolmogorov-Smirnov test. Computers and Geosciences 7, 415–26. (1C; 2B; 3A; 4CD; 5A; 6A; 7B.)CrossRefGoogle Scholar
Limon, G. L., Narvaez, G. A., Hueda, E. & Ortega, A. 1972. Tecnicas estadisticas aplicadas a estudios geologicos utilizando valores de analisis por fluorescencia de rayos X. Revista del Instituto Mexicano del Petroleo 4, 2842. (1C; 2B; 3B; 4D; 5A; 6A B; 7B.)Google Scholar
Lindseth, R. O. 1969. The application of transforms to digital well log operations. Society of Professional Well Log Analysts, 10th Annual Logging Symposium, Transactions, T1–T20. (ID; 3A; 4C D; 5A.)Google Scholar
Loudon, T. V. 1971. Some geological data structures: arrays, networks, trees and forests. In Data Processing in Biology and Geology (ed. Cutbill, J. L.), pp. 135–45. Systematics Association Special Volume No. 3. (6 J.)Google Scholar
Lumsden, D. N. 1971. Markov chain analysis of carbonate rocks: applications, limitations, and implications as exemplified by the Pennsylvanian System in Southern Nevada. Geological Society of America, Bulletin 82, 447–62. (1C; 2D; 3A; 4A; 5A; 6A; 7A.)CrossRefGoogle Scholar
MacDonald, G. M. 1983. Holocene vegetation history of the upper Natla River area, Northwest Territories, Canada. Arctic and Alpine Research 15, 169–80. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Malmgren, B. J. 1974. Morphometric studies of planktonic foraminifers from the type Danian of southern Scandinavia. Stockholm Contributions in Geology 29, 1126. (1 C D; 2B C D; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Mann, C. J. 1977. Towards a theoretical stratigraphy. Mathematical Geology 9, 649–52. (TH).CrossRefGoogle Scholar
Mann, C. J. 1979. Obstacles to quantitative lithostratigraphic correlation. In Geomathematical and Petrophysical Studies in Sedimentology (ed. Gill, D., Merriam, D. F.), pp. 149–65. Oxford: Pergamon. (REV; 5 A.)CrossRefGoogle Scholar
Mann, C. J. 1980. Quantitative lithostratigraphic correlation and stratigraphic gaps. 26th International Geological Congress, Abstracts 2, 871. (ABS.)Google Scholar
Mann, C. J. 1981. Stratigraphic analyis: decades of revolution (1970–1979) and refinement (1980–1989). In Computer Applications in the Earth Sciences (ed. Merriam, D. F.). pp. 211–42. New York: Plenum. (REV.)CrossRefGoogle Scholar
Mann, C. J. & Dowell, T. P. L. Jr 1978. Quantitative lithostratigraphic correlation of subsurface sequences. Computers and Geosciences 4, 295306. (1 D; 2AC; 3A; 4C D; 5A; 6C E G; 7A.)CrossRefGoogle Scholar
Marquardt, W. H. 1978. Advances in archaeological seriation. In Advances in Archaeological Method and Theory, Vol. 1 (ed. Schiffer, M. B.), pp. 257314. New York: Academic Press. (A basic reference on the development and use of seriation in archaeology).CrossRefGoogle Scholar
Martinson, D. G., Menke, W. & Stoffa, P. 1982. An inverse approach to signal correlation. Journal of Geophysical Research 87, 4807–18. (1C; 3A; 4C D; 5A; 6C E G; 7A.)CrossRefGoogle Scholar
Matuszak, D. R. 1972. Stratigraphic correlation of subsurface geologic data by computer. Mathematical Geology 4, 331–43. (1 D; 3A; 4C D; 5A; 6C E G; 7A.)CrossRefGoogle Scholar
McAndrews, J. H. 1982. Holocene environment of a fossil bison from Kenora, Ontario. Ontario Archaeology 37, 4151. (1C; 2B; 3B; 4C D; 5B; 6A; 7A.)Google Scholar
McAndrews, J. H., Riley, J. L. & Davis, A. M. 1982. Vegetation history of the Hudson Bay lowland: a postglacial pollen diagram from the Sutton Ridge. Le Naturaliste canadien 109, 597608. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
McCammon, R. B. 1966. Principal component analysis and its application in large-scale correlation studies. Journal of Geology 74, 721–33. (1C; 2B; 3 B; 4C D; 5 B; 6 D F H; 7A.)CrossRefGoogle Scholar
McCammon, R. B. 1970. On estimating the relative biostratigraphic value of fossils. Geological Institutions of the University of Uppsala, Bulletin, New Series 2, 4957. (2B; 5D; 7A.)Google Scholar
Mehringer, P. J. Jr, Arno, S. F. & Petersen, K. L. 1977. Postglacial history of Lost Trail Pass Bog, Bitterroot Mountains, Montana. Arctic and Alpine Research 9, 345–68. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Merriam, D. F. (ed.) 1964. Symposium on Cyclic Sedimentation. Kansas Geological Survey, Bulletin 169, 1636.Google Scholar
Merriam, D. F. (ed.) 1967. Computer applications in the earth sciences: colloquium on time-series analysis. Kansas Geological Survey, Computer Contribution 18, 177.Google Scholar
Merriam, D. F. 1971. Computer applications in stratigraphic problem solving. In Decision-making in the Mineral Industry (ed. McGerrigle, J. I.), pp. 139–47. Canadian Institute of Mining and Metallurgy, Special Volume No. 12. (REV.)Google Scholar
Merriam, D. F. & Robinson, J. E. 1980. Numerical description, segmentation and comparison of thematic maps. 26th International Geological Congress, Abstracts 2, 873. (ABS.)Google Scholar
Merriam, D. F. & Sneath, P. H. A. 1967. Comparison of cyclic rock sequences using cross-association. In Essays in Paleontology and Stratigraphy (ed. Teichert, C., Yochelson, E. L.), pp. 523–38. Lawrence, KS: University Press of Kansas. (1 D; 2D; 3 A; 4A; 5A; 6B C E; 7A.)Google Scholar
Millendorf, S. A., Brower, J. C. & Dyman, T. S. 1978. A comparison of methods for the quantification of assemblage zones. Computers and Geosciences 4, 229242. (1C; 2B; 3B; 4A; 5B D; 6D F H; 7A.)CrossRefGoogle Scholar
Millendorf, S. A. & Heffner, T. 1978. FORTRAN program for lateral tracing of time-stratigraphic units based on faunal assemblage zones. Computers and Geosciences 4, 313–18. (1C; 2B; 3B; 4A; 5C D; 6A D E; 7A.)CrossRefGoogle Scholar
Millendorf, S. A. & Millendorf, M. T. 1980. Lateral tracing of biostratigraphic units. 26th International Geological Congress, Abstracts 2, 874. (ABS.)Google Scholar
Millendorf, S. A. & Millendorf, M. T. 1982. The conceptual basis for lateral tracing of biostratigraphic units. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 101–6. Chichester: Wiley. (1C; 2B; 3B; 4A; 5B; 6A D E; 7A.)Google Scholar
Millendorf, S. A., Srivastava, G. S., Dyman, T. A. & Brower, J. C. 1978. A FORTRAN program for calculating binary similarity coefficients. Computers and Geosciences 4, 307–11. (4A; 5D; only relevant in that it allows weighting by RBV.)CrossRefGoogle Scholar
Miller, F. X. 1977. The graphic correlation method in biostratigraphy. In Concepts and Methods of Biostrati graphy (ed. Kauffman, E. G., Hazel, J. E.), pp. 165–86. Stroudsburg, PA: Dowden, Hutchinson & Ross. (1C; 3B; 4A; 5BC; 6J; 7A.)Google Scholar
Miller, F. X. 1980. Graphic correlation: a new concept for biostratigraphy. In Facts and Principles of World Petroleum Occurrence (ed. Miall, A. D.), pp. 994–5. Canadian Society of Petroleum Geologists, Memoir No. 6. (ABS.).Google Scholar
Moran, J. H., Coufleau, M. A., Miller, G. K. & Timmons, J. P. 1962. Automatic computation of dipmeter logs digitally recorded on magnetic tapes. Journal of Petroleum Technology 14, 771–82. (1D; 3A; 4C D; 5A; 6C E G; 7A.)CrossRefGoogle Scholar
Morgan, W. J. & Loomis, T. P. 1971. Correlation coefficients and sea-floor spreading. An automated analysis of magnetic profiles. Marine Geophysical Researches 1, 248–60. (1 D; 3A; 4C D; 5A; 6C EG; 7A.)CrossRefGoogle Scholar
Mosimann, J. E. & Greenstreet, R. L. 1971. Representation-insensitive methods for paleoecological pollen studies. In Statistical Ecology. Volume 1. Spatial Patterns and Statistical Distributions (ed. Patil, G. P., Pielou, E. C., Waters, W. E.), pp. 2358. University Park, PA: Pennyslvania State University Press. (2B; 3B; 4CD; 6A; 7A.)Google Scholar
Murphy, M. A. 1981. The application of Shaw's method of graphic correlation to Lower Devonian conodonts from Nevada. Geological Society of America, Abstracts with Programs 13, 516. (ABS.)Google Scholar
Murphy, M. A. & Berry, W. B. N. 1983. Early Devonian conodont–graptolite collation and correlations with brachiopod and coral zones, Central Nevada. American Association of Petroleum Geologists, Bulletin 67, 371–9. (3B; 4A; 5BC; 6J; 7A.)Google Scholar
Murphy, M. A. & Edwards, L. E. 1977. The Silurian-Devonian boundary in central Nevada. In Western North America: Devonian (ed. Murphy, M. A., Berry, W. B. N., Sandberg, C. A.), pp. 183–9. University of California, Riverside Campus, Museum Contribution, No. 4. (1C; 3B; 4A; 5C; 6J; 7A.)Google Scholar
Mut, S. C. 1959. An evaluation of the long pilot cross-correlation technique. Geophysics 24, 1143. (ABS.)Google Scholar
Neidell, N. S. 1969. Ambiguity functions and the concept of geological correlation. In Symposium on Computer Applications in Petroleum Exploration (ed. Merriam, D. F.). Kansas Geological Survey, Computer Contribution 40, 1929. (ID; 3A; 4CD; 5A; 6C E G; 7A.)Google Scholar
Nichols, H. 1975. Palynological and paleoclimatic study of the Late Quaternary displacements of the boreal forest–tundra ecotone in Keewatin and Mackenzie, N. W. T., Canada. University of Colorado, Institute of Arctic and Alpine Research, Occasional Paper 15, 87 pp. (1C; 2B; 3B; 4CD; 5B; 6A; 7A.)Google Scholar
Nishiwaki, N. 1980. Numerial correlation of Quarternary sediments using the civil engineering data and its geologic significance. 26th International Geological Congress, Abstracts 2, 876. (ABS.)Google Scholar
Nosal, M. & Vrbik, J. 1982. Stratigraphic analysis and the asymptotic distribution of the coefficient of cross-association. Mathematical Geology 14, 1136. (1D; 3A; 4A; 5A; 6C E; 7B.)CrossRefGoogle Scholar
Odell, J. 1975. Error estimation in stratigraphic correlation. Mathematical Geology 7, 167182. (1C; 3B; 4A; 5C E; 6E J; 7B.)CrossRefGoogle Scholar
Olea, R. A. & Davis, J. C. 1986. An artificial intelligence approach to lithostratigraphic correlation using geophysical well logs. In 61st Annual Technical Conference of the Society of Petroleum Engineers (New Orleans). SPE Paper No. 15603, 12 pp. Abstracted in Petroleum Abstracts 26, No. 409776. (1 D; 2B; 3B; 4C D; 5A; 6C E G; 7A.)Google Scholar
Oliphant, C. W. & Fullerton, P. 1954. Punch-card calculations of detailed stratigraphic correlations. Tulsa Geological Society, Digest 22, 7989. (1 D; 3 A; 4C D; 5A; 6C E G; 7A.)Google Scholar
Oltz, D. F. Jr 1971. Cluster analyses of Late Cretaceous-Early Tertiary pollen and spore data. Micropaleontology 17, 221–32. (1C; 2B; 3C; 4A D; 5B; 6H; 7 A.)CrossRefGoogle Scholar
Ortega, A. Ch. & Limon, G. L. 1976. Algunos ejemplos trabajados e geoestadistica. Revista del Instituto Mexicano del Petroleo 8, 725. (1C; 2B; 3B; 4D; 5A; 6A B; 7B.)Google Scholar
Pak, D. N. 1984. Mathematical model for the construction of composite standards from occurrences of fossil taxa. Computers and Geosciences 10, 107–10. (1C; 3B; 4A; 5B C D; 6J; 7A.)CrossRefGoogle Scholar
Palen, E. 1984. Corrélation entre des sondages de diagraphie. Sciences de la terre, Série. ‘Informatique Géologique’ 20, 277–94. (1D; 3A; 4A; 5A; 6B C F; 7A.)Google Scholar
Pawlikowski, M., Ralska-Jasiewiczowa, M., Schön-Born, W., Stupnicka, E. & Szeroczyńska, K. 1982. Woryty near Gietrzwatd, Olsztyn Lake District, NE Poland – vegetational history and lake development during the last 12000 years. Acta Palaeobotanica 22, 85116. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Pennington, W. & Sackin, M. J. 1975. An application of principal components analysis to the zonation of two late-Devensian profiles. New Phytologist 75, 419–53. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Pirson, S. J. 1983. Geologic Well Log Analysis. Houston: Gulf, 475 pp.Google Scholar
Pisias, N. G., Barron, J. A., Nigrini, C. A. & Dunn, D. A. 1985. Stratigraphic resolution of Leg 85 drill sites: an initial analysis. Initial Reports of the Deep Sea Drilling Project 85, 695708. (1C; 3B; 4A; 5C; 6J; 7A.)CrossRefGoogle Scholar
Pisias, N. G., Martinson, D. G., Moore, T. C. Jr, Shackleton, N. J., Prell, W., Hays, J. & Boden, G. 1984. High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300000 years. Marine Geology 56, 119–36. (1C; 3 A B; 4A C D; 5A C; 6C E G; 7A.)CrossRefGoogle Scholar
Poelchau, H. S. 1987. Coherence mapping–an automated approach to display goodness-of-correlation between wells in a field. Mathematical Geology 19, 833–50. (1D; 3A; 4CD; 5A; 6B C E G; 7A.)CrossRefGoogle Scholar
Potenza, R. 1980. Automatic processing of the relations among lithologic units of Italy. 26th International Geological Congress, Abstracts 2, 878. (ABS.)Google Scholar
Prell, W. L., Imbrie, J., Martinson, D. G., Morley, J. J., Pisias, N. G., Shackleton, N. J. & Streeter, H. F. 1986. Graphic correlation of oxygen isotope stratigraphy: application to the late Quaternary. Paleoceanography 1, 137–62. (1C; 3B; 4A; 5A C; 6E; 7A.)CrossRefGoogle Scholar
Prentice, I. C. 1982. Multivariate methods for the presentation and analysis of data. In Palaeohydrological changes in the temperate zone in the last 15,000 years. IGCP 158 B. Lake and mire environments. Project guide Volume III. Specific methods, (ed. Berglund, B. E.), pp. 5377. Lund: International Geological Correlation Programme. (1C; 2B; 3B; 4C D; 5B; 6A B; 7A.)Google Scholar
Preston, F. W. & Henderson, J. H. 1964. Fourier series characterization of cyclic sediments for stratigraphic correlation. In Symposium on Cyclic Sedimentation (ed. Merriam, D. F.). Kansas Geological Survey, Bulletin 169 (2), 415–25. (1D; 2B; 3A; 4C D; 5A; 6A; 7A.)Google Scholar
Price, R. J. & Jorden, P. R. 1977. A FORTRAN IV program for foraminiferid stratigraphic correlation and paleoenvironmental interpretation. Computers and Geosciences 3, 601–15. (1C; 2B; 3B; 4A; 5B; 6A; 7A.)CrossRefGoogle Scholar
Rabe, B. D. & Cisne, J. L. 1980. Chronostratigraphic accuracy of Ordovician ecostratigraphic correlation. Lethaia 13, 109–18. (1C; 3B; 4B D; 5C; 6C E; 7A.)CrossRefGoogle Scholar
Raymond, R. Jr., Waterman, M. S. & Howell, J. A. 1981. The match game; stratigraphic correlation through automation. Los Alamos Scientific Laboratory, Report LA-UR-81–3130, 3 pp. (ABS; Paper presented at Annual Meeting of American Association of Petroleum Geologists, Calgary, 1981.)Google Scholar
Read, W. A. & Sackin, M. J. 1971. A quantitative comparison, using cross-association, of vertical sections of Namurian (E1) paralic sediments in the Kincardine Basin, Scotland. Institute of Geological Sciences, Report 71/74, 21 pp. (1D; 2B D; 3A; 4A; 5A; 6C E G; 7A.)Google Scholar
Reyment, R. A. 1978 a. Graphical display of growth-free variation in the Cretaceous benthonic foraminifer Afrobolivina afra. Palaeogeography, Palaeoclimatology, Palaeoecology 25, 267–76. (1C; 3B; 4D; 5E; 6C E; 7A.)CrossRefGoogle Scholar
Reyment, R. A. 1978 b. Quantitative biostratigraphical analysis exemplified by Moroccan Cretaceous ostracods. Micropaleontology 24, 2443. (1C; 3B; 5B; 6D E F J; 7A.)CrossRefGoogle Scholar
Reyment, R. A. 1978 c. Biostratigraphical logging methods. Computers and Geosciences 4, 261–8. (1C; 3B; 5B; 6A D E F J; 7A.)CrossRefGoogle Scholar
Reyment, R. A. 1980. Morphometric Methods in Biostratigraphy. London: Academic Press, 175 pp. (1C; 2A C; 3B; 5B E; 6D E J; 7A.)Google Scholar
Reyment, R. A. 1982. Correlation between electrical borehole logs in paleoecology. In Quantitative Stratigraphic Correlation, (ed. Cubitt, J. M., Reyment, R. A.), pp. 233240. Chichester: Wiley. (1C D; 2C D; 3A B; 4C D; 5E; 6C E; 7A.)Google Scholar
Reyre, Y. 1972. Application de l'informatique à la ‘gestion’ et à l'interprétation stratigraphique des données paléontologiques quantitatives. Bulletin du Bureau de recherches géologiques et minières, (2nd Series), Section 4 2, 4965. (1C; 3B; 4D; 5B; 6B D E; 7A.)Google Scholar
Reyre, Y. 1973. Palynologie du Mésozoique Saharien. Mémoires du Muséum National d'Histoire Naturelle, Série C 27, 1284. (1C; 3B; 4D; 5B; 6B D E; 7A.)Google Scholar
Ritchie, J. C. 1977. The modern and Late Quaternary vegetation of the Campbell–Dolomite uplands, near Inuvik, N.W.T. Canada. Ecological Monographs 47, 401–23. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Ritchie, J. C. 1982. The modern and late-Quarternary vegetation of the Doll Creek area, North Yukon, Canada. New Phytologist 90, 563603. (1C; 2B; 3B; 4D; 5B; 6A J; 7A.)CrossRefGoogle Scholar
Ritchie, J. C. & Yarranton, G. A. 1978. The Late–Quaternary history of the boreal forest of central Canada, based on standard pollen stratigraphy and Principal Components Analysis. Journal of Ecology 66, 199212. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Robinson, J. E. 1975. Transforms to enhance correlation of mechanical well logs. Mathematical Geology 7, 323–34. (1D; 3A; 4C D; 5A.)CrossRefGoogle Scholar
Robinson, J. E. 1978. Pitfalls in automatic lithostratigraphic correlation. Computers and Geosciences 4, 273–75. (REV; 1C; 3A; 4C D; 5A; 6B C E F G; 7A.)CrossRefGoogle Scholar
Rubel, M. 1976. On biological construction of time in geology. [In Russian]. Eesti NSV Teaduste Akateemia Toimetised, Keemia Geologia 25 (2), 136–44. (3B; 4A; 5B C; 6J; 7A.)CrossRefGoogle Scholar
Rubel, M. 1978. Principles of construction and use of biostratigraphical scales for correlation. Computers and Geosciences 4, 243–6. (3B; 4A; 5B C; 6J; 7A B.)CrossRefGoogle Scholar
Rubel, M. & Pak, D. N. 1984. Theory of stratigraphic correlation by means of ordinal scales. Computers and Geosciences 10, 97105. (TH; 4A; 5C; 6J; 7A B.)CrossRefGoogle Scholar
Rudman, A. J., Blakely, R. F. & Henderson, G. J. 1975. Frequency domain methods of stratigraphic correlation. In 7th Annual Society of Petroleum Engineers of American Institute of Mining, Metallurgical and Petroleum Engineers Offshore Technology Conference (Houston). Abstracted in Petroleum Abstracts 15, No. 207008. (ABS.)CrossRefGoogle Scholar
Rudman, A. J. & Blakely, R. F. 1976. FORTRAN program for correlation of stratigraphic time series. Indiana Geological Survey, Occasional Paper 14, 31 pp. (1D; 3A; 4C D; 5A; 6C E F G; 7A.)Google Scholar
Rudman, A. J. & Lankston, R. W. 1973. Stratigraphic correlation of well logs by computer techniques. American Association of Petroleum Geologists, Bulletin 57, 577–88. (ID; 3A; 4C D; 5A; 6C E G; 7A.)Google Scholar
Rymer, L. 1977. A late-glacial and early post-glacial pollen diagram from Drimnagall, North Knapdale, Argyllshire. New Phytologist 79, 211–21. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Sackin, M. J., Sneath, P. H. A. & Merriam, D. F. 1965. ALGOL program for cross-association of nonnumeric sequences using a medium-size computer. Kansas Geological Survey, Special Distribution Publication 23, 36 pp. (ID; 3A; 4A; 5A; 6C E G; 7A.)Google Scholar
Salin, Yu. S. 1976. Algorithm of stratigraphic correlation. Modern Geology 5, 191–99. (1C; 3B; 4A; 5E; 6J; 7 A.)Google Scholar
Salin, Yu. S. 1980. Conformable and unconformable relationships in stratified series. Soviet Geology and Geophysics 21 (5), 3642. (TH.)Google Scholar
Salin, Yu. S. 1983. Stratigraphical Correlation. [In Russian]. Moscow; Nedra Press, 158 pp. (REV; TH.)Google Scholar
Salin, Yu. S. 1985. Basic geometrical models in geology: Werner's topological model, Mathematical Geology 17, 547–61. (TH; 1C; 3B; 4A; 5E; 6J; 7A.)CrossRefGoogle Scholar
Schoonover, L. G. & Holt, O. R. 1973. Computer methods of diplog correlation. Society of Petroleum Engineers, Journal 13, 31–8. (ID; 3A; 4D; 5A; 6C F G; 7A.)CrossRefGoogle Scholar
Schwarzacher, W. 1964. An application of statistical time-series analysis of a limestone-shale sequence. Journal of Geology 72, 195213. (ID; 2C D; 3A B; 4D; 5A; 6A C E; 7A.)CrossRefGoogle Scholar
Schwarzacher, W. 1975. Sedimentation Models and Quantitative Stratigraphy. Amsterdam: Elsevier, 382 pp. (REV; TH.)Google Scholar
Schwarzacher, W. 1978. Quantitative und theoretische Methoden in der stratigraphisch–sedimentologischen Analyse. Geologische Rundschau 67, 809–22. (REV.)CrossRefGoogle Scholar
Schwarzacher, W. 1980. Models for the study of stratigraphic correlation. Mathematical Geology 12, 213–34. (TH.)CrossRefGoogle Scholar
Schwarzacher, W. 1982. Quantitative correlation of a cyclic limestone-shale formation. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 275–86. Chichester: -Wiley. (TH; 2D; 5A C; 6B; 7A B.)Google Scholar
Schwarzacher, W. 1985 a. Principles of quantitative lithostratigraphy. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 361–86. Dordrecht: Reidel. (TH.)Google Scholar
Schwarzacher, W. 1985 b. Lithostratigraphic correlation and sedimentation models. In Quantitative Stratigraphy (ed. Gradstein, F. M., Agterberg, F. P., Brower, J. C., Schwarzacher, W.), pp. 387418. Dordrecht: Reidel. (REV; 5 A C.)Google Scholar
Schwimmer, D. R. 1975. Quantitative taxonomy and biostratigraphy of Middle Cambrian trilobites from Montana and Wyoming. Mathematical Geology 7, 149–66. (1C; 2B; 3B; 4A; 5B; 6D F H; 7A.)CrossRefGoogle Scholar
Scott, G. H. 1974. Essay review: stratigraphy and seriation. Newsletters on Stratigraphy 3, 93100. (1C; 3B; 4A; 5B C; 6J; 7A.)CrossRefGoogle Scholar
Shaw, A. B. 1960. Quantitative fossil correlations. Geological Society of America, Bulletin 71, 1972. (ABS.)Google Scholar
Shaw, A. B. 1964. Time in Stratigraphy. New York: McGraw-Hill, 365 pp. (1C; 3B; 4A; 5C; 6J; 7B; the basic reference for the graphic correlation method.)Google Scholar
Shaw, B. R. 1978. Parametric interpolation of digitized log segments. Computers and Geosciences 4, 277–83. (1 D; 2A B; 3A; 4C D; 5A; 7A.)CrossRefGoogle Scholar
Shaw, B. R. 1982. A short note on the correlation of geologic sequences. In Quantitative Stratigraphic Correlation (ed. Cubitt, J. M., Reyment, R. A.), pp. 711. Chichester: Wiley. (TH.)Google Scholar
Shaw, B. R. & Cubitt, J. M. 1979. Stratigraphic correlation of well logs: an automated approach. In Geomathematical and Petrophysical Studies in Sedimentology (ed. Gill, D., Merriam, D. F.), pp. 127–48. Oxford: Pergamon. (REV; 1 D; 2A B; 3B; 4D; 5A; 6A B C E G; 7A.)CrossRefGoogle Scholar
Shuey, R. T., Brown, F. H., Eck, G. G. & Howell, F. C. 1978. A statistical approach to temporal biostratigraphy. In Geological Background to Fossil Man (ed. Bishop, W. W.), pp. 103–24. Edinburgh: Scottish Academic Press. (TH; 1C; 3B; 4A; 5B C; 6C D E J; 7B.)Google Scholar
Shure, L. & Chave, A. D. 1983. An alternate approach to signal correlation. Eos 64, 242. (ABS.)Google Scholar
Smith, D. G. 1986. Stratigraphic time-correlation in the Late Triassic of Svalbard: a discussion of N. F. Hughes's working methods. Special Papers in Palaeontology 35, 149–61. (1C; 3B; 4A; 5C; 6J; 7B.)Google Scholar
Smith, D. G. & Fewtrell, M. D. 1979. A use of network diagrams in depicting stratigraphic time-correlation. Geological Society of London, Journal 136, 21–8. (1C; 3B; 4A; 5C; 6J; 7A B.)CrossRefGoogle Scholar
Smith, T. F. & Waterman, M. S. 1980. New stratigraphic correlation techniques. Journal of Geology 88, 451–57. (4A; 5A; 6C E G; 7A.)CrossRefGoogle Scholar
Sneath, P. H. A. 1967. Quality and quantity of available geologic information for studies in time. In Computer Applications in the Earth Sciences: Colloquium on Time-Series Analysis (ed. Merriam, D. F.). Kansas Geological Survey, Computer Contribution 18, 5761. (1D; 3B; 5A; 6B; 7A.)Google Scholar
Sneath, P. H. A. 1976 a. (‘1975’). Quantitative method for lateral tracing of sedimentary units. Computers and Geosciences 1, 215–20. (1D; 3B; 5A; 6D E; 7A.)CrossRefGoogle Scholar
Sneath, P. H. A. 1976 b. Clarification on a quantitative stratigraphic correlation technique. Computers and Geosciences 1, 353–54. (1D; 3B; 5A; 6D E; 7A.)CrossRefGoogle Scholar
Sorgenfrei, T. 1958. Molluscan assemblages from the marine Middle Miocene of South Jutland and their environments. Danmarks Geologiske Undersøgelse, Series 2 79, 2 vols. (3B; 4A; 5B; concerns the quantitative stratigraphic com paris on of faunas, not the comparison of stratigraphic time-series.)Google Scholar
Souder, W. W. & Pickett, G. R. 1972. A computerized method for the zonation of digitized well logs. In 47th Annual Society of Petroleum Engineers of American Institute of Mining, Metallurgical and Petroleum Engineers Fall Meeting (San Antonio). Abstracted in Petroleum Abstracts 12, No. 166549. (ABS.)CrossRefGoogle Scholar
Souder, W. W. & Pickett, G. R. 1974. A computerized method for the zonation of digitized well logs. The Log Analyst 15 (3), 38. (1D; 2B; 3A; 4C D; 5A; 6A; 7A.)Google Scholar
Southam, J. R., Hay, W. W. & Worsley, T. R. 1975. Quantitative formulation of reliability in stratigraphic correlation. Science 188, 357–59. (1C; 4A; 5E; 6J; 7B.)CrossRefGoogle ScholarPubMed
Southam, J. R. & Hay, W. W. 1978. Correlation of stratigraphic sections by continuous variables. Computers and Geosciences 4, 257–60. (1D; 3A; 4C D; 5A; 6C G; 7A.)CrossRefGoogle Scholar
Southwick, S. H. & Adair, T. W. III. 1964. Digital computer programming for automatic analysis of well logs. Journal of Petroleum Technology 16, 3540. (1D; 2B; 3B; 4C D; 5A; 6A; 7A.)CrossRefGoogle Scholar
Startzman, R. A. & Kuo, T.-B. 1986. An artificial intelligence approach to well log correlation. Society of Professional Well Log Analysts, 27th Annual Logging Symposium, Transactions, WW1–WW21. (ID; 2B; 3A; 4C D; 5A; 6A D; 7A.)Google Scholar
Startzman, R. A. & Kuo, T.-B. 1987. An artificial intelligence approach to well log correlation. The Log Analyst 28, 175–83. (1D; 2B; 3 A; 4C D; 5A; 6A D; 7A.)Google Scholar
Stephanou, H. E. 1979. Multilevel syntax analysis for geological data compression. Instrument Society of America, Transactions 18 (3), 101–4. (1D; 2B; 3A; 4C D; 5A; 6A; 7A.)Google Scholar
Stober, J. C. & Thompson, R. 1977. Palaeomagnetic secular variation studies of Finnish lake sediment and the carriers of remanence. Earth and Planetary Science Letters 37, 139–49. (1C; 3A; 4C D; 5A; 6E G; 7A.)CrossRefGoogle Scholar
Sweet, W. C. 1979 a. Late Ordovician conodonts and biostratigraphy of the Western Midcontinent Province. Brigham Young University, Geology Studies 26 (3), 4585. (3B; 4A; 5C; 6J; 7A.)Google Scholar
Sweet, W. C. 1979 b. Graphic correlation of Permo-Triassic rocks in Kashmir, Pakistan and Iran. Geologica et Palaeontologica 13, 239–48. (3B; 4A; 5C; 6J; 7A.)Google Scholar
Sweet, W. C. 1984. Graphic correlation of upper Middle and Upper Ordovician rocks, North American Midcontinent Province, U.S.A. In Aspects of the Ordovician System (ed. Bruton, D. L.), pp. 2335. Palaeontological Contributions from the University of Oslo No. 295. (3B; 4A; 5C; 6J; 7A.)Google Scholar
Tallis, J. H. & Johnson, R. H. 1980. The dating of landslides in Longdendale, north Derbyshire, using pollen-analytical techniques. In Timescales in Geomorphology (ed. Cullingford, R. A., Davidson, D. A., Lewin, J.), pp. 189205. Chichester: Wiley. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Testerman, J. D. 1962. A statistical reservoirzonation technique. Journal of Petroleum Technology 14, 889–93. (1D; 2B; 3A; 4C D; 5A; 6A D E; 7A B.)CrossRefGoogle Scholar
Tipper, J. C. 1987. On the directional nature of stratigraphic correlation. Geological Magazine 124, 149–55. (TH.)CrossRefGoogle Scholar
Trueman, A. E. 1922. The use of Gryphaea in the correlation of the Lower Lias. Geological Magazine 59, 256–68. (1D; 2C; 3A; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Tsitsiashvili, G. Sh., Mezdrich, B. M., Mikhailov, M. A. & Vasil'ev, A. P. 1976. Use of linear monotonic functionals in the problem of demarcation of geological objects. Soviet Geology and Geophysics 17 (3), 80–5. (1C; 2B; 3B; 5A; 6A; 7A.)Google Scholar
Tsitsiashvili, G. Sh., Mezdrich, B. M. & Pushkar, V. S. 1977. Mathematical modeling of layered geological formations. Soviet Geology and Geophysics 18 (5), 72–9. (1C; 2B; 3B; 5B; 6A; 7A.)Google Scholar
Tuman, V. S. & Bollman, D. 1961. Application of computers to the interpretation of well logs. Journal of Petroleum Technology 13, 311–18. (1D; 2B; 3A; 4C D; 5A; 6A B E G; 7A.)CrossRefGoogle Scholar
Turner, J. & Hodgson, J. 1981. Studies in the vegetational history of the northern Pennines. II. An atypical pollen diagram from Pow Hill, Co. Durham. Journal of Ecology 69, 171–88. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)CrossRefGoogle Scholar
Vail, P. R., Mitchum, R. M. Jr, Todd, R. G., Widmier, J. M., Thompson, S. III., Sangree, J. B., Bubb, J. N. & Hatlelid, W. G. 1977. Seismic stratigraphy and global changes of sea level. American Association of Petroleum Geologists, Memoir 26, 49212.Google Scholar
Vainberg, Ya. M. 1980. Use of Markov chains in the problem of separation of a borehole section. Soviet Geology and Geophysics 21 (2), 7886. (1C; 2B; 3B; 5A; 6A; 7B.)Google Scholar
Vainberg, Ya. M. 1982. Statistical methods for the subdivision of inhomogeneous objects, using the Markov conditional probabilities. Soviet Geology and Geophysics 23 (7), 100–6. (1C; 2B; 3B; 5A; 6A; 7B.)Google Scholar
Vincent, P., Gartner, J.-E. & Attali, G. 1979. An approach to detailed dip determination using correlation by pattern recognition. Journal of Petroleum Technology 31, 232–40. (1D; 3A; 4D; 5A; 6D G; 7A.)CrossRefGoogle Scholar
Vistelius, A. B. 1957. Subdivision of unfossiliferous strata by quantitative mineralogical, petrographic, or chemical characteristics. [In Russian]. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 86, 99115. (1 C; 2 B C; 3B; 4C D; 5A; 6A; 7B. Translation in: Vistelius, A. B. 1967. Studies in Mathematical Geology. New York: Consultants Bureau, pp. 226–40.)Google Scholar
Vistelius, A. B. 1961. Sedimentation time trend functions and their application for correlation of sedimentary deposits. Journal of Geology 69, 703–28. (1C; 2C; 3A; 4B; 5A; 6C E; 7A.)CrossRefGoogle Scholar
Vistelius, A. B. 1967. Problems in mathematical geology. In: Vistelius, A. B. 1967. Studies in Mathematical Geology. New York: Consultants Bureau, pp. 928. (1C; 2C; 3A; 4B; 5A; 6C E; 7A; includes translation of article [in Russian] in Geologia i Geofizika (1963), No. 12, 3–10.)Google Scholar
Vrbik, J. 1985. Statistical properties of the number of runs of matches between two random stratigraphic sections. Mathematical Geology 17, 2940. (1 D; 3A; 4A; 5A; 6C E; 7B.)CrossRefGoogle Scholar
Walker, D. 1971. Quantification in historical plant ecology. Ecological Society of Australia, Proceedings 6, 91104. (REV; 2B.)Google Scholar
Walker, D. & Pittelkow, Y. 1981. Some applications of the independent treatment of taxa in pollen analysis. Journal of Biogeography 8, 3751. (1C; 3B; 4D; 5B; 6A; 7B.)CrossRefGoogle Scholar
Walker, D. & Wilson, S. R. 1978. A statistical alternative to the zoning of pollen diagrams. Journal of Biogeo graphy 5, 121. (1C; 3B; 4D; 5B; 6A; 7B.)CrossRefGoogle Scholar
Walters, E. J. 1968. Statistical study of neutron logs for correlation studies. Society of Professional Well Log Analysts, 9th Annual Logging Symposium, Transactions, F1–F15. (1 D; 2B; 3A; 4D; 5A; 6B; 7A.)Google Scholar
Waterman, M. S. & Raymond, R. Jr 1987. The match game: new stratigraphic correlation algorithms. Mathe matical Geology 19, 109–27. (1 D; 3B; 5A; 6B C E G; 7A.)CrossRefGoogle Scholar
Webster, R. 1980. DIVIDE: a FORTRAN IV program for segmenting multivariate one-dimensional spatial series. Computers and Geosciences 6, 61–8. (1 C D; 2 B; 3 B; 4C D; SA; 6A; 7A.)CrossRefGoogle Scholar
Weller, J. M. 1960. Stratigraphic Principles and Practice. New York: Harper and Brothers, 725 pp. (I C; 3B; 4A; 5B; concerns only the quantitative stratigraphic comparison of faunas.)Google Scholar
Westberg, M. J. & Riedel, W. R. 1978. Accuracy of radiolarian correlations in the Pacific Miocene. Micro paleontology 24, 123. (7B.)Google Scholar
Whitehead, D. R. 1979. Late-glacial and postglacial vegeta tional history of the Berkshires, western Massachusetts. Quaternary Research 12, 333–57. (1C; 2B; 3B; 4D; 513; 6A; 7A.)CrossRefGoogle Scholar
Williamson, M. A. 1987. A quantitative foraminiferal biozonation of the Late Jurassic and Early Cretaceous of the East Newfoundland Basin. Micropaleontology 33, 3765. (1C; 3B; 4A; 5B C; 6J; 7B.)CrossRefGoogle Scholar
Wolleben, J. A. 1968. Statistical biostratigraphic correlation and Senonian stratigraphy in West Texas and northeastern Chihuahua, Mexico. Gulf Coast Associa tion of Geological Societies, Transactions 18, 166–73. (1C; 2B C; 3A; 4C D; 513 C; 6D E J; 7B.)Google Scholar
Worsley, T. R. & Blank, R. G. 1975. Stratigraphic distribution of common calcareous nannofossils of the Pacific Ocean. Geological Society of America, Abstracts with Programs 7, 1323. (ABS.)Google Scholar
Worsley, T. R., Blechschmidt, G., Ralston, S. & Snow, B. 1973. Probability-based analysis of the area-time distribution of Oligocene calcareous nannofossils. In Proceedings of Symposium on Calcareous Nannofossils (ed. Smith, L. A., Hardenbol, J. A.), pp. 71–9. Houston: Gulf Coast Section, Society of Economic Paleontologists and Mineralogists. (1C; 3B; 4A; 5B C; 6J; 7B.)Google Scholar
Worsley, T. R. & Jorgens, M. L. 1974. Oligocene calcareous nannofossil provinces. In Paleogeographic Pro vinces and Provinciality (ed. Ross, C. A.), pp. 85108. Society of Economic Paleontologists and Mineralogists, Special Publication No. 21. (1C; 3B; 4A; 5B; 6J; 7 B.)CrossRefGoogle Scholar
Worsley, T. R. & Jorgens, M. L. 1977. Automated biostratigraphy. In Oceanic Micropaleontology, Vol. 2 (ed. Ramsay, A. T. S.), pp. 1201–29. London: Academic Press. (IC; 3B; 4A; 5BC; 6J; 7B.)Google Scholar
Yarranton, G. A. & Ritchie, J. C. 1972. Sequential correlations as an aid in placing pollen zone boundaries. Pollen et Spores 14, 213–23. (1C; 2B; 3B; 4D; 5B; 6A; 7A.)Google Scholar
Zangwill, J. 1982. Depth matching – a computerised approach. Society of Professional Well Log Analysts, 23rd Annual Logging Symposium, Transactions, EE1–EE17. (1 D; 3A; 4C D; SA; 6C E G; 7A.)Google Scholar