Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:42:49.809Z Has data issue: false hasContentIssue false

Strontium-, carbon- and oxygen-isotope compositions of marbles from the Cycladic blueschist belt, Greece

Published online by Cambridge University Press:  03 February 2011

CLAUDIA GÄRTNER*
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, 48149 Münster, Germany Institut für Geologie und Paläontologie, Universität Münster, Corrensstr. 24, 48149 Münster, Germany
MICHAEL BRÖCKER
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, 48149 Münster, Germany
HARALD STRAUSS
Affiliation:
Institut für Geologie und Paläontologie, Universität Münster, Corrensstr. 24, 48149 Münster, Germany
KATJA FARBER
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, 48149 Münster, Germany
*
Author for correspondence: [email protected]

Abstract

The Cycladic blueschist belt, Greece, is mostly submerged below sea level and regional correlations are difficult to establish. Marbles are widespread within the belt and locally used as marker horizons to subdivide monotonous schist sequences. However, owing to the lack of distinctive petrographic characteristics, the marbles have not been used for island-to-island correlations. This study aims to investigate the potential of Sr-, C- and O-isotope compositions of marbles as a tool for unravelling the litho- and/or tectonostratigraphic relationships across the Cycladic islands, and as a proxy for the time of sediment formation. For this purpose, we have studied metamorphic carbonate rocks from the islands of Tinos, Andros, Syros, Sifnos and Naxos. Identical 87Sr/86Sr values for certain marble horizons occurring on Tinos, Andros and Sifnos are interpreted to document coeval regional carbonate precipitation. The 87Sr/86Sr values of the apparently least altered samples intersect the seawater curve multiple times within the most likely time interval of original carbonate precipitation (< 240 Ma; as indicated by previously published ion probe U–Pb zircon data) and thus an unequivocal age assignment is not possible. Very broad temporal correlations are possible, but more subtle distinctions are not feasible. On Andros, the overlapping Sr-isotope values of marbles representing the lowest and highest parts of the metamorphic succession are in accordance with a model suggesting isoclinal folding or thrusting of a single horizon, or very fast sedimentation. In contrast, distinct 87Sr/86Sr values for samples from Tinos, representing different levels of the metamorphic succession, suggest that these rocks represent a temporal succession and not the tectonic repetition of a single horizon. Based on Sr-, O- and C-isotope characteristics alone the time equivalence of marbles occurring on different islands could not be documented unambiguously. However, by using various combinations of these parameters, some occurrences can be discriminated from the overall sample population. The new data further accentuate the general potential of coupled Sr-, C- and O-isotope characteristics for identification of archaeological provenance and complement existing datasets for Aegean marbles.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G. A., Keller, J., Harre, W. & Höhndorf, A. 1982. A Late Oligocene/Early Miocene high temperature belt in the Attic-Cycladic Crystalline Complex (SE Pelagonian, Greece). Geologisches Jahrbuch E23, 97164.Google Scholar
Altherr, R., Schliestedt, M., Okrusch, M., Seidel, E., Kreuzer, H., Harre, W., Lenz, H., Wendt, I. & Wagner, G. A. 1979. Geochronology of high-pressure-rocks on Sifnos (Cyclades, Greece). Contributions to Mineralogy and Petrology 70, 245–55.CrossRefGoogle Scholar
Altherr, R. & Siebel, W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology 134, 397415CrossRefGoogle Scholar
Avigad, D. 1993. Tectonic juxtaposition of blueschists and greenschists in Sifnos Island (Aegean Sea) – implications for the structure of the Cycladic blueschist belt. Journal of Structural Geology 15, 1459–469.CrossRefGoogle Scholar
Avigad, D. & Garfunkel, Z. 1989. Low-angle faults above and below a blueschist belt-Tinos Island, Cyclades, Greece. Terra Nova 1, 182–87.CrossRefGoogle Scholar
Avigad, D., Garfunkel, Z., Jolivet, L. & Azanon, J. M. 1997. Back arc extension and denudation of Mediterranean eclogites. Tectonics 16, 924–41.CrossRefGoogle Scholar
Avigad, D., Matthews, A., Evans, B. W. & Garfunkel, Z. 1992. Cooling during exhumation of a blueschist terrane: Sifnos (Cyclades, Greece). European Journal of Mineralogy 4, 619–34.CrossRefGoogle Scholar
Baker, J., Bickle, M. J., Buick, I. S., Holland, T. J. B. & Matthews, A. 1989. Isotopic and petrological evidence for the infiltration of a water-rich fluid during the Miocene M2 metamorphism on Naxos, Greece. Geochimica et Cosmochimica Acta 53, 2037–50.CrossRefGoogle Scholar
Banner, J. L. 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth Science Reviews 65, 141–94.CrossRefGoogle Scholar
Bickle, M. J., Chapman, H. J., Wickham, S. M. & Peters, M. T. 1995. Strontium and oxygen isotope profiles across marble-silicate contacts, Lizzies Basin, East Humboldt Range, Nevada: constraints on metamorphic permeability contrasts and fluid flow. Contributions to Mineralogy and Petrology 121, 400–13.CrossRefGoogle Scholar
Brady, J. B., Markley, M. J., Schumacher, J. C., Cheney, J. T. & Bianciardi, G. R. 2004. Aragonite pseudomorphs in high-pressure marbles of Syros, Greece. Journal of Structural Geology 26, 39.CrossRefGoogle Scholar
Brilli, M., Cavazzini, G. & Turi, B. 2005. New data of 87Sr/86Sr ratio in classical marble: an initial database for marble provenance determination. Journal of Archaeological Science 32, 1543–551.CrossRefGoogle Scholar
Bröcker, M., Biehling, D., Hacker, B. & Gans, P. 2004. High-Si phengite records the time of greenschist facies overprinting: implications for models suggesting mega-detachments in the Aegean Sea. Journal of Metamorphic Geology 22, 427–42.CrossRefGoogle Scholar
Bröcker, M. & Enders, M. 1999. U-Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece). Geological Magazine 136, 111118.CrossRefGoogle Scholar
Bröcker, M. & Enders, M. 2001. Unusual bulk-rock compositions in eclogite facies rocks from Syros and Tinos (Cyclades, Greece): implications for U-Pb zircon geochronology. Chemical Geology 175, 581603.CrossRefGoogle Scholar
Bröcker, M. & Franz, L. 1994. The contact aureole on Tinos (Cyclades, Greece). Part I: Field relationships, petrography and P-T conditions. Chemie der Erde 54, 262–80.Google Scholar
Bröcker, M. & Franz, L. 1998. Rb-Sr isotope on Tinos Island (Cyclades, Greece): additional time constraints for metamorphism, extent of infiltration-controlled overprinting and deformational activity. Geological Magazine 135, 369–82.CrossRefGoogle Scholar
Bröcker, M. & Franz, L. 2000. Contact metamorphism on Tinos (Cyclades, Greece): the importance of tourmaline, timing of the thermal overprint and Sr isotope characteristics. Mineralogy and Petrology 70, 257–83.Google Scholar
Bröcker, M. & Franz, L. 2005. The base of the Cycladic blueschist unit on Tinos island (Greece) re-visited: field relationships, phengite-geochemistry and Rb-Sr-geochronology. Neues Jahrbuch für Mineralogie – Abhandlungen 181, 8193.CrossRefGoogle Scholar
Bröcker, M. & Franz, L. 2006. Dating metamorphism and tectonic juxtaposition on Andros Island (Cyclades): results of a Rb-Sr-study. Geological Magazine 143, 609–20.CrossRefGoogle Scholar
Bröcker, M. & Keasling, A. 2006. Ionprobe U-Pb-zircon ages from the high-pressure/low-temperature mélange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. Journal of Metamorphic Geology 24, 615–31.CrossRefGoogle Scholar
Bröcker, M., Kreuzer, H., Matthews, A. & Okrusch, M. 1993. 40Ar/39Ar and oxygen isotope studies of polymetamorphism from Tinos Island, Cycladic blueschist belt. Journal of Metamorphic Geology 11, 223–40.CrossRefGoogle Scholar
Bröcker, M. & Pidgeon, R. T. 2007. Protolith ages of meta-igneous and metatuffaceous rocks from the Cycladic blueschist unit, Greece: results of a reconnaissance U-Pb Zircon study. Journal of Geology 115, 8398.CrossRefGoogle Scholar
Buick, I. S. & Holland, T. J. B. 1989. The P-T-t path associated with crustal extension, Naxos, Cyclades, Greece. In Evolution of Metamorphic Belts. (eds Daly, J. S., Cliff, R. A. & Yardley, B. W. S.), pp. 365–69. Geological Society of London, Special Publication no. 43.Google Scholar
Bulle, F., Bröcker, M., Gärtner, C. & Keasling, A. 2010. Geochemistry and geochronology of HP mélanges from Tinos and Andros, Cycladic blueschist belt, Greece. Lithos 117, 61–81.CrossRefGoogle Scholar
Capedri, S., Venturelli, G. & Photiades, A. 2004. Accessory minerals and δ 18O and δ 13C of marbles from the Mediterranean area. Journal of Cultural Heritage 5, 2747.CrossRefGoogle Scholar
Cramer, T. 1998. Die Marmore des Telephosfrieses am Pergamonaltar. Berliner Beiträge zur Archäometrie 15, 95198.Google Scholar
Dixon, J. E. & Ridley, J. R. 1987. Syros. In Chemical Transport in Metasomatic Processes (ed. Helgeson, H. C.), pp. 489501. Dordrecht: Reidel Publishing Company.Google Scholar
Dürr, S., Altherr, R., Keller, J., Okrusch, M. & Seidel, E. 1978. The Median Aegean Crystalline Belt: stratigraphy, structure, metamorphism, magmatism. In Alps, Apennines, Hellenides (eds Closs, H., Roeder, D. H. & Schmidt, K.), pp. 455477. IUGS report no. 38, Schweizerbart, Stuttgart.Google Scholar
Dürr, S. & Flügel, H. 1979. Contribution à la stratigraphie du cristallin des Cyclades: mise en évidence du Trias supérieur dans les marbres de Naxos (Grèce). Rapport de la Commission Internationale de la Mer Méditerranée 25/26 (2a), 31–2.Google Scholar
Ebert, A., Gnos, E., Ramseyer, K., Spandler, C., Fleitmann, D., Bitzios, D. & Decrouez, D. 2010. Provenance of marbles from Naxos based on microstructural and geochemical characterization. Archaeometry 52, 209–28.CrossRefGoogle Scholar
Feenstra, A. 1985. Metamorphism of bauxites on Naxos, Greece. Ph.D. Thesis, University of Utrecht. Geologica Ultraiectina 39, 1–206.Google Scholar
Feenstra, A. 1996. An EMP and TEM-AEM study of margarite, muscovite and paragonite in polymetamorphic metabauxites of Naxos (Cyclades, Greece) and the implications of fine-scale mica interlayering and multiple mica generations. Journal of Petrology 37, 201–33.CrossRefGoogle Scholar
Fölling, P. G. & Frimmel, H. E. 2002. Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Research 13, 137.Google Scholar
Friedman, G. M. 1959. Identification of carbonate minerals by staining methods. Journal of Sedimentary Petrology 29, 8797.Google Scholar
Ganor, J., Matthews, A. & Paldor, N. 1989. Constraints on effective diffusivity during oxygen isotope exchange at a marble ± schist contact, Sifnos (Cyclades) Greece. Earth Planetary Science Letters 94, 208–16.CrossRefGoogle Scholar
Ganor, J., Matthews, A. & Paldor, N. 1991. Diffusional isotopic exchange across an interlayered marble-schist sequence with an application to Tinos, Cyclades, Greece. Journal of Geophysical Research 96, 18073–80.CrossRefGoogle Scholar
Ganor, J., Matthews, A. & Schliestedt, M. 1994. Post metamorphic low δ13C calcite veins in the Cycladic complex (Greece) and their implications for modeling fluid infiltration processes using carbon isotope compositions. European Journal of Mineralogy 6, 365–79.CrossRefGoogle Scholar
Gautier, P. & Brun, J. P. 1994. Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia Islands). Geodinamica Acta 7, 5785.CrossRefGoogle Scholar
Gautier, P., Brun, J.-P. & Jolivet, L. 1993. Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics 12, 1180–94.CrossRefGoogle Scholar
Herz, N. 1987. Carbon and oxygen isotopic ratios: a data base for classical Greek and Roman Marble. Archaeometry 29, 3543.CrossRefGoogle Scholar
Herz, N. 1992. Provenance determination of neolithic to classical Mediterranean marbles by stable isotopes. Archaeometry 34, 185–94.CrossRefGoogle Scholar
Jolivet, L. & Patriat, M. 1999. Ductile extension and the formation of the Aegean Sea. In The Mediterranean Basins: Tertiary extension within the Alpine Orogen (eds Durand, B., Jolivet, L., Horvath, F. & Séranne, M.), pp. 427–56. Geological Society of London, Special Publication no. 156.Google Scholar
Jolivet, L., Facenna, C., Goffé, B., Burov, E. & Agard, P. 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogen. American Journal of Science 303, 353409.CrossRefGoogle Scholar
Katzir, Y., Matthews, A., Garfunkel, Z. & Schliestedt, M. 1996. The tectono-metamorphic evolution of a dismembered ophiolite (Tinos, Cyclades, Greece). Geological Magazine 133, 237–54.CrossRefGoogle Scholar
Kaufman, A. J. & Knoll, A. H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 49, 301–27.CrossRefGoogle Scholar
Keay, S., Lister, G. & Buick, I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342, 275312.CrossRefGoogle Scholar
Keiter, M., Piepjohn, K., Ballhaus, C., Lagos, M. & Bode, M. 2004. Structural development of high-pressure metamorphic rocks on Syros island (Cyclades, Greece). Journal of Structural Geology 26, 1433–45.CrossRefGoogle Scholar
Krijgsman, W. 2002. The Mediterranean: Mare Nostrum of Earth Sciences. Earth and Planetary Science Letters 205, 112.CrossRefGoogle Scholar
Lazzarini, L. & Antonelli, F. 2003. Petrographic and isotopic characterization of the marble of the island of Tinos (Greece). Archaeometry 45, 541–52.CrossRefGoogle Scholar
Matthews, A., Lieberman, J., Avigad, D. & Garfunkel, Z. 1999. Fluid-rock interaction and thermal evolution during thrusting of an Alpine metamorphic complex (Tinos island, Greece). Contributions to Mineralogy and Petrology 135, 212–24.CrossRefGoogle Scholar
Matthews, A. & Schliestedt, M. 1984. Evolution of the blueschist and greenschist facies rocks of Sifnos, Cyclades, Greece. Contributions to Mineralogy and Petrology 88, 150–63.CrossRefGoogle Scholar
McArthur, J. M. 1994. Recent trends in strontium isotope stratigraphy. Terra Nova 6, 331–58.CrossRefGoogle Scholar
McArthur, J. M., Howarth, R. J. & Bailey, T. R. 2001. Strontium-Isotope-Stratigraphy: LOWESS Version 3. Best-fit line to the marine Sr-Isotope curve for 0–509 Ma accompanying look-up table for deriving numerical age. Journal of Geology 109, 155–69.CrossRefGoogle Scholar
Melezhik, V. A., Gorokhov, I. M., Fallick, A. E. & Gjelle, S. 2001. Strontium and carbon isotope geochemistry applied to dating of carbonate sedimentation: an example from high-grade rocks of the Norwegian Caledonides. Precambrian Research 108, 267–92.CrossRefGoogle Scholar
Melezhik, V. A, Roberts, D., Fallick, A. E., Gorokhov, I. M. & Kusnetzov, A. B. 2005. Geochemical preservation potential of high-grade calcite marble versus dolomite marble: implication for isotope chemostratigraphy. Chemical Geology 216, 203–24.CrossRefGoogle Scholar
Melidonis, N. G. 1980. The geological structure and mineral deposits of Tinos Island (Cyclades – Greece). In The Geology of Greece, vol. 13, pp.180. Athens: Institute of Geological and Mineral Exploration.Google Scholar
Mukhin, P. 1996. The metamorphosed olistostromes and turbidites of Andros Island, Greece, and their tectonic significance. Geological Magazine 133, 697711.CrossRefGoogle Scholar
Nascimento, R. S. C., Sial, N. A. & Pimentel, M. M. 2007. C- and Sr-isotope systematics applied to Neoproterozoic marbles of the Seridó belt, northeastern Brazil. Chemical Geology 237, 191210.CrossRefGoogle Scholar
Négris, P H. 1914. Roches cristallophylliennes et tectonique de la Grèce, pp. 2532. Imprimerie P. D. Sakellarios, Athènes.Google Scholar
Okrusch, M. & Bröcker, M. 1990. Eclogites associated with high-grade blueschists in the Cyclades archipelago, Greece: a review. European Journal of Mineralogy 2, 451–78.CrossRefGoogle Scholar
Papanikolaou, D. J. 1978 a. Contribution to the geology of Aegean Sea: the island of Andros. Annales Geologiques des pays Helleniques 29, 477553.Google Scholar
Papanikolaou, D. 1978 b. Geological map of Andros, 1:50000. Athens: Publication Department of Geological Maps of I.G.M.E.Google Scholar
Parra, T., Vidal, O. & Jolivet, L. 2002. Relation between the intensity of deformation and retrogression in blueschist metapelites of Tinos Island (Greece) evidenced by chlorite-mica local equilibra. Lithos 63, 4166.CrossRefGoogle Scholar
Patzak, M., Okrusch, M. & Kreuzer, H. 1994. The Akrotiri unit on the island of Tinos, Cyclades, Greece: witness to a lost terrane of Late Cretaceous age. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 194, 211–52.CrossRefGoogle Scholar
Ridley, J. 1984. Listric normal faulting and the reconstruction of the synmetamorphic structural pile of the Cyclades. In The geological evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 755–61. Geological Society of London, Special Publication no. 17.Google Scholar
Scholle, P. A. & Ulmer-Scholle, D. S. 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, textures, porosity, diagenesis. American Association of Petroleum Geologists Memoir 77, Tulsa, 474 pp.CrossRefGoogle Scholar
Schumacher, J. C., Brady, J. B., Cheney, J. T. & Tonnsen, R. R. 2008. Glaucophane-bearing Marbles on Syros, Greece. Journal of Petrology 49, 1667–86.CrossRefGoogle Scholar
Stolz, J., Engi, M. & Rickli, M. 1997. Tectonometamorphic evolution of SE Tinos, Cyclades, Greece. Schweizerisch Mineralogisch Petrographische Mitteilungen 77, 209–31.Google Scholar
Thomas, C. W., Graham, C. M., Ellam, R. M. & Fallick, A. E. 2004. 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian limestones of Scotland and Ireland: constraints on depositional ages and time scales. Journal of the Geological Society, London 161, 229–42.CrossRefGoogle Scholar
Tomaschek, F., Kennedy, A. K., Villa, I. M., Lagos, M. & Ballhaus, C. 2003. Zircons from Syros, Cyclades, Greece – recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology 44, 19772002.CrossRefGoogle Scholar
Trotet, F., Jolivet, L. & Vidal, O. 2001. Tectono-metamorphic evolution of Syros and Sifnos Islands (Cyclades, Greece). Tectonophysics 338, 179209.CrossRefGoogle Scholar
van Geldern, R., Joachimski, M. M., Day, J., Jansen, U., Alvarez, F., Yolkin, E. A. & Ma, X.-P. 2006. Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 4767.CrossRefGoogle Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H. 1999. 87Sr/86Sr, δ13C, δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.CrossRefGoogle Scholar
Wijbrans, J. R. & McDougall, I. 1988. Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. Journal of Metamorphic Geology 6, 571–94.CrossRefGoogle Scholar
Wijbrans, J. R., Schliestedt, M. & York, D. 1990. Single grain argon laser probe dating phengites from the blueschist to greenschist transition on Sifnos (Cyclades, Greece). Contributions to Mineralogy and Petrology 104, 582–93.CrossRefGoogle Scholar
Zöldföldi, J. & Satir, M. 2003. Provenance of white marble building stones in the monuments of the ancient Troia. In Troia and the Troad (eds Wagner, G. A., Pernicka, E. & Uerpmann, H. P.), pp. 203223. Berlin: Springer.CrossRefGoogle Scholar
Supplementary material: PDF

Gartner Supplementary Material

Gartner Supplementary Appendix

Download Gartner Supplementary Material(PDF)
PDF 23.3 MB