Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T23:14:43.333Z Has data issue: false hasContentIssue false

Spore tetrads, possible indicators of intense climatic regimes: case study from an early Permian stratum of Singrauli Coalfield, Son-Mahanadi Basin, India

Published online by Cambridge University Press:  03 August 2015

ANJU SAXENA
Affiliation:
Birbal Sahni Institute of Palaeobotany, 53, University Road, Lucknow 226007, India
KAMAL JEET SINGH*
Affiliation:
Birbal Sahni Institute of Palaeobotany, 53, University Road, Lucknow 226007, India
SRIKANTA MURTHY
Affiliation:
Birbal Sahni Institute of Palaeobotany, 53, University Road, Lucknow 226007, India
SHAILA CHANDRA
Affiliation:
Flat Number 105, Beverly Park Apartment 422, New Hyderabad, Lucknow 226007, India
SHREERUP GOSWAMI
Affiliation:
PG Department of Geology, Ravenshaw University, Cuttack 753003, Odisha, India
*
Author for correspondence: [email protected]

Abstract

A large number of naked, fossil spore tetrads assignable to the dispersed microspore genera Indotriradites, Microbaculispora and Microfoveolatispora are reported for the first time from an early Permian stratum (Lower Barakar Formation) of Singrauli Coalfield, Son-Mahanadi Basin, Central India. This is also the first record of tetrads from any Artinskian strata in the world. There is no evidence of any kind of sporangia or related plant parts in the present investigation that could ascertain the affinity of these tetrads; however, the presence of a trilete mark in the spores of the tetrads demonstrates their alliance at least with the pteridophyte group. The present study suggests possible factors affecting the sporogenesis process in the past, considering other available global records pertaining to fossil spore tetrads. The results of significant physiological and biochemical analyses performed on the anthers of modern plants related to reproductive biology, in order to understand the conditions and changes responsible for the formation of tetrads, are also considered. We analysed the globally occurring fossil tetrads and the palaeoclimates prevailing during their deposition. A correlation between extreme climatic conditions, specific pH values inside microsporangium and the formation of tetrad is envisaged. It is deduced that extreme climatic conditions (extreme cold/extreme hot) might have triggered some sort of malfunctioning in the sporogenesis process that altered the specific pH values inside the microsporangium. Any restraint of the activity of the callase enzyme, responsible for dissolution of callose walls laid between the individual spores, may therefore have apprehended the dissociation of tetrads into individual spores.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonin, S. A. 2000. A palynological assemblage from the transitional Permian-Triassic deposits of European Russia. Palaeontological Journal 34, 2934.Google Scholar
Balme, B. E. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology 87, 81323.CrossRefGoogle Scholar
Banerji, J. & Maheshwari, H. K. 1973. Palynomorphs from the Panchet Group exposed in Sukri River, Auranga Coalfield, Bihar. Palaeobotanist 22, 158–70.Google Scholar
Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. 2007. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philosophical Transactions of the Royal Society A 365, 1843–66.Google Scholar
Bharadwaj, D.C. 1962. Miospore genera in the coals of Raniganj Stage (Upper Permian) India. Palaeobotanist 9, 68106.Google Scholar
Burgess, N. D. 1991. Silurian cryptospores and miospores from the type Llandovery area, south-west Wales. Palaeontology 34, 575–99.Google Scholar
Burgess, N. D. & Richardson, J. B. 1991. Silurian cryptospores and miospores from the type Wenlock area, Shropshire, England. Palaeontology 34, 601–28.Google Scholar
Chen, X. Y. & Kim, J. Y. 2009. Callose synthesis in higher plants. Plant Signaling and Behavior 4, 489–92.Google Scholar
Dahanayake, K., Jayasena, H. A. H., Singh, B. K., Tiwari, H. K. & Tripathi, A. 1989. A Permo-Triassic (?) plant microfossil assemblage from Sri Lanka. Review of Palaeobotany and Palynology 58, 197203.CrossRefGoogle Scholar
Edwards, D., Davies, K. L., Richardson, J. B., Wellman, C. H. & Axe, L. 1996. Ultrastructure of Synorisporites downtonensis and Retusotriletes cf. coronadus in spore masses from the Přίdolί of the Welsh Borderland. Palaeontology 39, 783800.Google Scholar
Edwards, D., Duckett, J. G. & Richardson, J. B. 1995. Hepatic characters in the earliest land plants. Nature 374, 635–6.CrossRefGoogle Scholar
Edwards, D., Morris, J. L., Richardson, J. B., Axe, L. & Davis, K. L. 2012. Notes on sporangia and spore masses containing tetrads or monads from the Lower Devonian (Lochkovian) of the Welsh Borderland, U.K. Review of Palaeobotany and Palynology 179, 5685.Google Scholar
Edwards, D., Wellman, C. H. & Axe, L. 1999. Tetrads in sporangia and spore masses from the Upper Silurian and Lower Devonian of the Welsh Borderland. Botanical Journal of the Linnean Society 130, 111–56.CrossRefGoogle Scholar
Fei, H. & Sawhney, V. K. 1999. MS32-regulated timing of callose degradation during microsporogenesis in Arabidopsis is associated with the accumulation of stacked rough ER in tapetal cells. Sexual Plant Reproduction 12, 188–93.Google Scholar
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eiseman, I., Hughes, N. C., Tripathi, A. K. & Woodward, W.F. 2011. The magnitude and duration of Late Ordovician-Early Silurian Glaciation. Science 331, 903–6.Google Scholar
Foster, C. B. & Afonin, S. A. 2005. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian-Triassic boundary. Journal of the Geological Society 162, 653–9.Google Scholar
Góczán, F., Oravecz-Scheffer, A. & Szabó, I. 1986. Biostratigraphic zonation of the Lower Triassic in the Transdanubian central range. Acta Geologica Hungarica 29, 233–59.Google Scholar
Gray, J. 1985. The microfossil record of early land plants: advance in understanding of early terrestrialization, 1970–1984. Philosophical Transactions of the Royal Society of London B309, 167–95.Google Scholar
Haas, J., Góczán, F., Oravecz-Scheffer, A., Barabás-Stuhl, A., Majoros, G. & Bérczi-Makk, A. 1986. Permian-Triassic boundary in Hungary. Memoirs of the Geological Society, Italy 34, 221–41.Google Scholar
Haas, J., Tóth Makk, A., Oravecz Scheffer, A., Góczán, F., Oravecz, J. & Szabó, I. 1988. Lower Triassic key sections in the Transdanubian Mid-Mountains. Annals of the Hungarian Geological Institute 65, 1356.Google Scholar
Hankel, O. 1992. Late Permian to Early Triassic microfloral assemblages from the Maji ya Chumvi Formation, Kenia. Review of Palaeobotany and Palynology 72, 129–47.Google Scholar
Hermann, E., Hochuli Peter, A., Bucher, H. & Roohi, G. 2012. Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range, Pakistan. Review of Palaeobotany and Palynology 169, 6195.Google Scholar
Izhar, S. & Frankel, R. 1971. Mechanism of male sterility in Petunia: the relationship between pH, callase activity in the anthers and the breakdown of the microsporogenesis. Theoretical and Applied Genetics 41, 104–8.CrossRefGoogle ScholarPubMed
Johnson, N. G. 1985. Early Silurian palynomorphs from the T scarora Formation in central Pennsylvania and their paleobotanical and geological significance. Review of Palaeobotany and Palynology 45, 307–60.CrossRefGoogle Scholar
Lele, K. M. & Makada, R. 1972. Studies in the Talchir flora of India-7. Palynology of the Talchir Formation in Jayanti Coalfield, Bihar. Geophytology 2, 4173.Google Scholar
Li, T., Gong, C. & Wang, T. 2010. RA68 is required for post meiotic pollen development in Oryza sativa . Plant Molecular Biology 72, 265–77.Google Scholar
Looy, C. V., Collinson, M. E., Van Konijnenburg-Van Cittert, J. H. A., Visscher, H. & Brain, A. P. R. 2005. The ultrastructure and botanical affinity of End-Permian spore tetrads. International Journal of Plant Sciences 166 (5), 875–87.Google Scholar
Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A. & Visscher, H. 2001. Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences, USA 98, 7879–83.Google Scholar
Maheshwari, H. K. & Banerjee, J. 1975. Lower Triassic palynomorphs from the Maitur Formation, West Bengal, India. Palaeontographica B 152, 149–90.Google Scholar
Mangerud, G. 1994. Palynostratigraphy of the Permian and lowermost Triassic succession, Finmark Platform, Barents Sea. Review of Palaeobotany and Palynology 82, 317–49.Google Scholar
Massari, F., Neri, C., Pittau, P., Fontana, D. & Stefani, C. 1994. Sedimentology, palynostratigraphy and sequence stratigraphy of a continental to shallow-marine rift-related succession: Upper Permian of the eastern Southern Alps (Italy). Memoirs of the Geological Society of America 46, 119243.Google Scholar
Ouyang, S. & Norris, G. 1999. Earliest Triassic (Induan) spores and pollen from the Junggar Basin, Xinjiang, northwestern China. Review of Palaeobotany and Palynology 106, 156.Google Scholar
Ouyang, S. & Utting, J. 1990. Palynology of Upper Permian and Lower Triassic rocks, Meishan, Changxing County, Zhejiang Province, China. Review of Palaeobotany and Palynology 66, 65103.Google Scholar
Pacini, E., Franchi, G. G. & Hesse, M. 1985. The tapetum: Its form, function, and possible phylogeny in Embryophyta. Plant Systematics and Evolution 149, 155–85.Google Scholar
Pant, D. D. & Singh, R. 1990. Possible sporae dispersae of Hepaticae and Anthocerotales in the fossil record. Palaeobotanist 39, 2036.Google Scholar
Potonié, R. & Lele, K. M. 1959. Studies in the Talchir Flora of India-1. Sporae Dispersae from the Talchir beds of South Rewa Gondwana Basin. Palaeobotanist 8, 2237.Google Scholar
Qu, L. & Wang, Z. 1986. Triassic sporo-pollen assemblages. In Permian and Triassic Strata and Fossil Assemblages in the Dalongkou Area of Jimsar, Xinjiang (eds Yang, J., Hou, J., Qu, L. & Sun, S.), pp. 113–73. Beijing: Geological Publishing House, Geological Memoirs no. 2(3).Google Scholar
Raja Rao, C. S. 1983. Coalfields of India Vol. III; Coal resources of Madhya Pradesh, Jammu and Kashmir. Bulletins of Geological Survey of India, Series A 45, 7580.Google Scholar
Ram-Awatar, 2011. Occurrence of spore tetrads in the Pali sediments of South Rewa Basin, India and their climatic inference. Palaeobotanist 60, 363–8.Google Scholar
Ram-Awatar, , Tewari, R., Agnihotri, D., Chatterjee, S., Pillai, S. S. K. & Meena, K. L. 2014. Late Permian and Triassic palynomorphs from the Allan Hills, central Transantarctic Mountains, South Victoria Land, Antarctica. Current Science 106 (7), 988–96.Google Scholar
Richardson, J. B. 1988. Late Ordovician and Early Silurian cryptospores and miospores from northeast Libya. In Subsurface Palynostratigraphy of Northeast Libya (eds El-Arunati, A., Owns, B. & Thusu, B.), pp. 89101. Benghazi, Libya: Garyounis University Publications.Google Scholar
Richardson, J. B. 1996. Taxonomy and classification of some new Early Devonian cryptospores from England. In Studies on Early Land Plant Spores from Britain (ed. C. J. Cleal), Special Papers in Palaeontology 55, 740.Google Scholar
Richardson, J. B. & Lister, T. R. 1969. Upper Silurian and Lower Devonian spore assemblages from the Welsh Borderland and South Wales. Palaeontolology 12, 201–52.Google Scholar
Rubinstein, C. V., Gerrienne, P., Dela Puente, G. S., Astini, R. A. & Steemans, P. 2010. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist 188, 365–9.Google Scholar
Steemans, P. 2000. Miospore evolution from the Ordovician to the Silurian. Review of Palaeobotany and Palynology 113, 189–96.CrossRefGoogle Scholar
Steemans, P. 2001. Ordovician crytospores from the Oostudinkerke borehole, Brabant Massif Belgium. Geobios 34, 312.Google Scholar
Steemans, P., Higgs, K. T. & Wellman, C. H. 2000. Cryptospores and trilete spores from the Llandovery, Nuayyim-2 Borehole, Saudi Arabia. In Stratigraphic Palynology of the Palaeozoic of Saudi Arabia. (eds Al-hajri, S. & Owens, B.), pp. 92115. Bahrain: GeoArabia.Google Scholar
Steemans, P., Petus, E., Breuer, P., Mauller-Mendlowicz, P. & Gerrienne, P. 2012. Palaeozoic innovations in the micro-and megafossil Plant record: from the earliest plant spores to the earliest seeds. In Earth and Life, International Year of Planet Earth (ed. Talent, J. A.), pp. 437–77. Netherlands: Springer.Google Scholar
Steemans, P. & Wellman, C. H. 2004. Miospores and the emergence of land plants. In The Great Ordovician Biodiversification Event (eds Webby, B., Paris, F., Droser, M. L. & Percival, I. G.), pp. 61366. New York: Columbia University Press.Google Scholar
Stieglitz, H. 1977. Role of β-1,3-glucanase in post-meiotic microspore release. Developmental Biology 58, 8797.Google Scholar
Stieglitz, H. & Stern, H. 1973. Regulation of β-1,3-glucanase activity in developing anthers of Lilium . Developmental Biology 34, 169–73.Google Scholar
Strother, P. K. 1991. A classification scheme for cryptospores. Palynology 15, 219–36.CrossRefGoogle Scholar
Strother, P. K., Al-Hajri, S. & Traverse, A. 1996. New evidence for land plants from the lower Middle Ordovician of Saudi Arabia. Geology 24, 558.2.3.CO;2>CrossRefGoogle Scholar
Strother, P. K. & Traverse, A. 1979. Plant microfossils from the Llandoverian and Wenlockian rocks of Pennsylvania. Palynology 3, 121.Google Scholar
Taylor, W. A. 1995. Ultrastructure of Tetrahedraletes medinensis (Strother and Traverse) Wellman and Richardson, from the Upper Ordovician of southern Ohio. Review of Palaeobotany and Palynology 85, 183–7.Google Scholar
Taylor, W. A. & Strother, P. K. 2008. Ultrastructure of some Cambrian Palynomorphs from the Bright Angel Shale, Arizona USA. Review of Palaeobotany and Palynology 151, 4150.CrossRefGoogle Scholar
Tiwari, R.S. 1964. New miospore genera in the coals of Barakar Stage (Lower Gondwana) of India. Palaeobotanist 12, 250–9.Google Scholar
Tiwari, R. S. & Meena, K. L. 1989. Abundance of spore tetrads in the Early Triassic sediments of India and their significance. Palaeobotanist 37, 210–4.Google Scholar
Tiwari, R. S. & Rana, V. 1981. Sporae dispersae of some Lower and Middle Triassic Sediments from Damodar Basin, India. Palaeobotanist 27, 190220.Google Scholar
Tiwari, R. S. & Tripathi, A. 1987. Palynological zones and their climate inference in the coal bearing Gondwana of Peninsular India. Palaeobotanist 36, 87101.Google Scholar
Tuzhikova, V.I. 1985. Miospores and Stratigraphy of Reference Section of Triassic Age from the Upper Permian–Lower Triassic Boundary Beds of the Urals. Sverdlovsk: USSR Academy of Sciences, Ural Science Centre, 232 pp. (in Russian).Google Scholar
Utting, J. 1994. Palynostratigraphy of Permian and Lower Triassic rocks, Sverdrup basin, Canadian Artic Archipelago. Bulletin of the Geological Survey of Canada 478, 1107.Google Scholar
Vavrdová, M. 1988. Further acritarchs and terrestrial plant remains from the Late Ordovician at Hlasna Treban (Czechoslovakia). CAS Mineral Geology 33, 110.Google Scholar
Vavrdová, M. 1990. Coenobial acritarchs and other palynomorphs from the Arenig/Llanvirn boundary, Prague basin. Vest ceskeho Geology Ust 65, 237–42.Google Scholar
Vijaya, , Tripathi, A., Roy, A. & Mitra, S. 2012. Palynostratigraphy and age correlation of subsurface strata within the sub-basins in Singrauli Gondwana Basin, India. Journal of Earth System Science 121, 1071–92.Google Scholar
Visscher, H., Looy, C. V., Collinson, M. E., Brinkhuis, H., Van Cittert, J. H. A., Kurschner, W. M. & Sephton, M. A. 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences, USA 101, 12952–6.Google Scholar
Wan, L., Zha, W., Cheng, X., Liu, C., Lv, L., Liu, C., Wang, Z., Du, B., Chen, R., Zhu, L. & He, G. 2011. A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. Planta 233, 309–23.Google Scholar
Wang, Y. I., Li, J. & Wang, R. 1997. Latest Ordovician cryptospores from Southern Xinjiang, China. Review of Palaeobotany and Palynology 99, 6774.Google Scholar
Wellman, C. H. 1996. Cryptospores from the type area of the Caradoc Series in Southern Britain. Special Papers in Palaentology 55, 103–36.Google Scholar
Wellman, C. H., Higgs, K. T. & Steemans, P. 2000. Spore assemblages from a Silurian sequence in Borehole Hawiyah-151 from Saudi Arabia. In Stratigraphic Palynology of the Palaeozoic of Saudi Arabia (eds Al-hajri, S. & Owens, B.), pp. 116–33. Bahrain: GeoArabia.Google Scholar
Wellman, C. H., Osterloff, P. L. & Mohiuddin, U. 2003. Fragments of the earliest land plants. Nature 425, 282–5.Google Scholar
Wellman, C. H. & Richardson, J. B. 1993. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontology 36, 155–93.Google Scholar
Winiarczy, K., Jaroszuk-Ściseł, J. & Kupisz, K. 2012. Characterization of callase (β-1,3-d-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum . Sexual Plant Reproduction 25, 123–31.Google Scholar
Wright, R. P. & Askin, R. A. 1987. The Permian-Triassic boundary in the southern Morondava Basin of Madagascar as defined by plant microfossils. Geophysical Monograph 41, 157–66.Google Scholar
Xie, B., Wang, X. & Hong, Z. 2010. Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis. Planta 231, 809–23.Google Scholar