Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:23:00.780Z Has data issue: false hasContentIssue false

Source character, mixing, fractionation and alkali metasomatism in Palaeoproterozoic greenstone dykes, Dannemora area, NE Bergslagen region, Sweden

Published online by Cambridge University Press:  13 August 2013

PETER DAHLIN*
Affiliation:
Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden
ÅKE JOHANSSON
Affiliation:
Laboratory for Isotope Geology, Swedish Museum of Natural History, Box 50 007, SE-10405 Stockholm, Sweden
ULF B. ANDERSSON
Affiliation:
Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden LKAB, Research and Development, TFG, SE-981 36 Kiruna, Sweden
*
Author for correspondence: [email protected]

Abstract

The geochemical and isotopic characteristics of metamorphosed Svecofennian mafic dykes from the Dannemora area in the NE part of the Bergslagen region in central Sweden were investigated and compared to mafic intrusive rocks in their vicinity. The dykes, with an inferred age of c. 1860–1870 Ma, are calc-alkaline, sub-alkaline and basaltic in composition and have a mixed subduction and within-plate geochemical affinity. They are the result of mixing of at least three mantle source components with similar basaltic major element composition, but different concentrations of incompatible trace elements. Magma M1 is strongly enriched both in Rare Earth Elements (REE) and High-Field-Strength Elements (HFSE); magma M2 is highly enriched in Large-Ion Lithophile Elements (LILE, except Sr) with only moderate enrichment in HFSE and REE (particularly low in Heavy Rare Earth Elements); and magma M3 is enriched in Sr and has a flat REE profile. Magma M3 also has a somewhat more positive (depleted) initial εNd value of +1.8, compared to +0.4 to +0.5 for magmas M1 and M2. The magma evolution was controlled by a mixture of fractionation (mainly affecting the compatible elements) and mixing, best seen in the incompatible element concentrations and the Nd isotope data. The basaltic overall composition indicates little or no wholesale contamination by upper continental crust, but the dykes have undergone later metasomatic changes mainly affecting the alkali elements.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R. L., Lundström, I., Ripa, M., Simeonov, A. & Christofferson, H. 1996. Facies analysis of a 1.9 Ga, continental marin, back-arc, felsic caldera province with diverse Zn-Pb-Ag (Cu-Au) sulfide and Fe oxide deposits, Bergslagen Region, Sweden. Economic Geology 91, 9791008.Google Scholar
Andersen, T., Andersson, U. B., Graham, S., Åberg, G. & Simonsen, S. L. 2009. Granitic magmatism by melting of juvenile continental crust: New constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, London 166, 233–47.Google Scholar
Andersson, U. B. 1991. Granitoid episodes and mafic-felsic magma interaction in the Svecofennian of the Fennoscandian Shield, with main emphasis on the ~1.8 Ga plutonics. In Precambrian Granitoids: Petrogenesis, Geochemistry and Metallogeny (eds Haapala, I. & Condie, K. C.), pp. 127139. Precambrian Research 51.Google Scholar
Andersson, U. B. 1997 a. The sub-Jotnian Strömsbro rapakivi complex at Gävle, Sweden. GFF 119, 159–67.Google Scholar
Andersson, U. B. 1997 b. Petrogenesis of some Proterozoic granitoid suites and associated basic rocks in Sweden (geochemistry and isotope geology). Sveriges Geologiska Undersökning, Rapporter och Meddelanden , 91, 216 pp.Google Scholar
Andersson, U. B. 2005. Age and P-T paths of metamorphism in the Bergslagen region, southern Sweden. SGU-rapport 2005–7, 22–4.Google Scholar
Andersson, U. B., Begg, G. C., Griffin, W. L. & Högdahl, K. 2011. Ancient and juvenile components in the continental crust and mantle: Hf isotopes in zircon from Svecofennian magmatic rocks and rapakivi granites in Sweden. Lithosphere 3, 409–19.Google Scholar
Andersson, U. B., Eklund, O. & Claeson, D. T. 2004 a. Geochemical character of the mafic-hybrid magmatism in the Småland-Värmland belt. Geological Survey of Finland, Special Paper 37, 4755.Google Scholar
Andersson, U. B., Högdahl, K., Sjöström, H. & Bergman, S. 2006 a. Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geological Magazine 143, 679–97.Google Scholar
Andersson, U. B., Eklund, O., Fröjdö, S. & Konopelko, D. 2006 b. 1.8 Ga magmatism in the Fennoscandian shield; lateral variations in subcontinental mantle enrichment. Lithos 86, 110–36.CrossRefGoogle Scholar
Andersson, U. B., Rutanen, H., Johansson, Å., Mansfeld, J. & Rimša, A. 2007. Characterization of the Paleoproterozoic mantle beneath the Fennoscandian Shield: Geochemistry and isotope geology (Nd, Sr) of ~1.8 Ga mafic plutonic rocks from the Transscandinavian Igneous Belt in Southeast Sweden. International Geology Review 49, 587625.CrossRefGoogle Scholar
Andersson, U. B., Sjöström, H., Högdahl, K. & Eklund, O. 2004 b. The Transscandinavian Igneous belt, evolutionary models. Geological Survey of Finland, Special Paper 37, 104–12.Google Scholar
Beunk, F. F. & Kuipers, G. 2012. The Bergslagen ore province, Sweden: Review and update of an accreted orocline, 1.9–1.8 Ga BP. Precambrian Research 216–19, 95119.Google Scholar
Cabanis, B. & Lecolle, M. 1989. Le diagramme La/10-Y/15-Nb/8. Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l’Academie des Sciences Serie II, 309, 2023–29.Google Scholar
Dahlin, P., Allen, R. & Sjöström, H. 2012. Palaeoproterozoic metavolcanic and metasedimentary succession hosting the Dannemora iron ore deposits, Bergslagen region, Sweden. GFF 134, 7185.Google Scholar
Davidson, J. 1996. Deciphering mantle and crustal signatures in subduction zone magmatism. Geophysical Monograph 98, 251–62.Google Scholar
De Paolo, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–96.Google Scholar
Dickin, A. 1995. Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 452 pp.Google Scholar
Gaál, G. & Gorbatschev, R. 1987. An outline of the Precambrian evolution of the Baltic shield. Precambrian Research 35, 1552.Google Scholar
Gorton, M. & Schandl, E. S. 2000. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist 38, 1065–73.Google Scholar
Hastie, A. R., Kerr, A. C., Pearce, J. A. & Mitchell, S. F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology 48, 2341–57.Google Scholar
Hermansson, T., Stephens, M. B., Corfu, F., Andersson, J. & Page, L. 2007. Penetrative ductile deformation and amphibolite-facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen, Fennoscandian Shield. Precambrian Research 153, 2945.Google Scholar
Hermansson, T., Stephens, M. B., Corfu, F., Page, L. M. & Andersson, J. 2008. Migratory tectonic switching, western Svecofennian orogen, central Sweden. Constraints from U/Pb zircon and titanite geochronology. Precambrian Research 161, 250–78.Google Scholar
Högdahl, K., Andersson, U. B. & Eklund, O. (eds) 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37, 125 pp.Google Scholar
Högdahl, K., Sjöström, H. & Bergman, S. 2009. Ductile shear zones related to crustal shortening and domain boundary evolution in the central Fennoscandian Shield. Tectonics 28, TC1003, doi:10.1029/2008TC002277.CrossRefGoogle Scholar
Hughes, C. J. 1972. Spilites, keratophyres, and the igneous spectrum. Geological Magazine 109, 513–27.Google Scholar
Ishizuka, O., Yuasa, M., Tamura, Y., Shukuno, H., Stern, R. J., Naka, J., Joshima, M. & Taylor, R. N. 2010. Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation. Earth and Planetary Science Letters 294, 111–22.Google Scholar
Jacobsen, S. B. & Wasserburg, G. J. 1984. Sm-Nd isotopic evolution of chondrites and achondrites. II. Earth and Planetary Science Letters 67, 137–50.Google Scholar
Johansson, Å., Andersson, U. B. & Hålenius, U. 2012. Petrogenesis and geotectonic setting of early Svecofennian arc cumulates in the Roslagen area, east-central Sweden. Geological Journal 47, 557–93.Google Scholar
Johansson, Å. & Hålenius, U. 2013. Palaeoproterozoic mafic intrusions along the Avesta-Östhammar belt, east-central Sweden: mineralogy, geochemistry and magmatic evolution. International Geology Review 55, 131–57.Google Scholar
Kelemen, P. B., Hanghøj, K. & Greene, A. R. 2005. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In The Crust (ed. Rudnick, R. L.), pp. 593659. Amsterdam: Elsevier, Treatise on Geochemistry no. 3.Google Scholar
Korja, A. K., Lahtinen, R. & Nironen, M. 2006. The Svecofennian orogen: a collage of microcontinents and island arcs. In European Lithosphere Dynamics (eds Gee, D. G. & Stephenson, R. A.), pp. 561–78. Geological Society of London, Memoirs no. 32.Google Scholar
Lager, I. 2001. The geology of the Palaeoproterozoic limestone-hosted Dannemora iron deposit, Sweden. Sveriges Geologiska Undersökning: Rapporter och Meddelanden 107, 49 pp.Google Scholar
Lahtinen, R., Korja, A. & Nironen, M. 2005. Palaeoproterozoic tectonic evolution of the Fennoscandian Shield. In The Precambrian Bedrock of Finland: Key to the Evolution of the Fennoscandian Shield (eds Lehtinen, M., Nurmi, P. & Rämö, O. T.), 418532. Amsterdam: Elsevier.Google Scholar
Leslie, R. A. J., Danyushevsky, L. V., Crawford, A. J. & Verbeeten, A. C. 2009. Primitive shoshonites from Fiji: Geochemistry and source components. Geochemistry Geophysics Geosystems 10, Q07001, doi:0.1029/2008GC002326.Google Scholar
Lundström, I., Allen, R. L., Persson, P.-O. & Ripa, M. 1998. Stratigraphies and depositional ages of Svecofennian, Palaeoproterozoic meta-volcanic rocks in E. Svealand and Bergslagen, south central Sweden. GFF 120, 315–20.Google Scholar
Maclean, W. H. & Barrett, T. J. 1993. Lithogeochemical techniques using immobile elements. Journal of Geochemical Exploration 48, 109–33.Google Scholar
Magnusson, N. H. 1940. Herrängsfältet och dess järnmalmer. Sveriges Geologiska Undersökning C 431, 78 pp (in Swedish).Google Scholar
Mcculloch, M. T. & Chappell, B. W. 1982. Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters 58, 5164.Google Scholar
Meen, J. K. 1987. Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality. Contributions to Mineralogy and Petrolology 97, 333–51.Google Scholar
Miller, C., Schuster, R., Klötzli, U., Frank, W. & Purtscheller, F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet; geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology 40, 1399–424.Google Scholar
Nesbitt, H. W. & Young, G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based upon thermodynamic and kinematic considerations. Geochimica Cosmochimica Acta 48, 1523–34.Google Scholar
Nesbitt, H. W. & Young, G. M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology 97, 129–47.Google Scholar
Nironen, M. 1997. The Svecofennian orogen: a tectonic model. Precambrian Research 86, 2144.Google Scholar
Oen, I. S., Helmers, H., Verschure, B. H. & Wiklander, U. 1982. Ore deposition in a Proterozoic incipient rift zone environment. A tentative model for the Filipstad-Grythyttan-Hjulsjö region, Bergslagen Sweden. Geologische Rundschau 71, 182–94.Google Scholar
Pearce, J. A. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. & Norry, M. J.), 230–49. Nantwich, UK: Shiva Geology Series.Google Scholar
Pearce, J. A., Alabaster, T., Shelton, A. W. & Searle, M. 1981. The Oman Ophiolite as a Cretaceous arc-basin complex. Evidence and implications. Philosophical Transactions of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences 300, 299317.Google Scholar
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251–85.Google Scholar
Pe-Piper, G. 1983. Triassic shoshonites and andesites, Lakmon Mountains, western continental Greece: Differences in primary geochemistry and sheet silicate alteration products. Lithos 16, 2333.Google Scholar
Persson, K. S. & Sjöström, H. 2003. Late-orogenic progressive shearing in eastern Bergslagen, central Sweden. GFF 125, 2336.Google Scholar
Pin, C. & Zalduegui, J. F. S. 1997. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography. Application to isotopic analyses of silicate rocks. Analytica Chimica Acta 339, 7989.Google Scholar
Risku-Norja, H. 1992. Geochemistry of the dolerite dykes in Södermanland, eastern central Sweden. GFF 114, 6791.Google Scholar
Rutanen, H. & Anderson, U. B. 2009. Mafic plutonic rocks in a continental-arc setting: geochemistry of 1.87–1.78 Ga rocks from south-central Sweden and models of their Palaeotectonic setting. Geological Journal 44, 241–79.Google Scholar
Rutanen, H., Andersson, U. B., Väisänen, M., Johansson, Å., Fröjdö, S., Lahaye, Y. & Eklund, O. 2011. 1.8 Ga magmatism in southern Finland: strongly enriched mantle and juvenile crustal sources in a post-collisional setting. International Geology Review 53, 1622–83.Google Scholar
Söderlund, U., Isachsen, C. E., Bylund, G., Heaman, L. M., Patchett, P. J., Vervoort, J. D. & Andersson, U. B. 2005. U–Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contributions to Mineralogy and Petrology 150, 174–94.Google Scholar
Stålhös, G. 1991. Beskrivning till berggrundskartorna Östhammar NV, NO, SV, SO med sammanfattande översikt av basiska gångar, metamorfos och tektonik i östra Mellansverige. Sveriges Geologiska Undersökning Af 161, 166, 169, 172, Uppsala. 249 pp (in Swedish).Google Scholar
Stephens, M. B., Ahl, M., Bergman, T., Lundström, I., Persson, L., Ripa, M. & Wahlgren, C.-H. 2007. Regional geological and geophysical maps of Bergslagen and surrounding areas. Bedrock map. Sveriges Geologiska Undersökning Ba 58.1, Uppsala.Google Scholar
Stephens, M. B., Ahl, M., Bergman, T., Lundström, I., Persson, L., Ripa, M. & Wahlgren, C. H. 2009. Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden. Sveriges Geologiska Undersökning Ba 58, Uppsala, 259 pp.Google Scholar
Sturchio, N. C., Muehlenbachs, K. & Seitz, M. G. 1986. Element redistribution during hydrothermal alteration of rhyolite in an active geothermal system - Yellowstone drill cores Y-7 and Y-8. Geochimica et Cosmochimica Acta 50, 1619–31.Google Scholar
Sun, S. S. & Mcdonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts. Implications for mantle composition and processes. In Magmatism in Ocean Basins (eds Saunders, A. D. & Norry, M. J.), 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tirén, S. A. & Beckholmen, M. 1990. Influence of regional shear zones on the lithological pattern in central Sweden. GFF 112, 197–9.Google Scholar
Törnebohm, A. E. 1878. Beskrifning till Geologisk Atlas öfver Dannemora Grufvor. Beckman, Stockholm, 85 pp (in Swedish).Google Scholar
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P. & Deng, Q. 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau: implication for convective thinning of the lithosphere and source of ocean island basalts. Journal of Petrology 37, 4571.Google Scholar
Van Der Velden, W., Baker, J., De Maesschalck, S. & Van Meerten, T. 1982. Bimodal volcanism in the Grythytte Field and associated volcano-plutonic complexes, Bergslagen, Central Sweden. Geologische Rundschau 71, 171–81.Google Scholar
Wikström, A. 1992. Some composite dikes in Sweden. GFF 114, 385–94.Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their different products using immobile element. Chemical Geology 20, 325–43.Google Scholar
Wood, D. A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 1130.Google Scholar
Yang, W.-B., Niu, H.-C., Shan, Q., Luo, Y., Sun, W.-D., Li, C.-Y., Li, N.-B., & Yu, X.-Y. 2012. Late Paleozoic calc-alkaline to shoshonitic magmatism and its geodynamic implications, Yuximolegai area, western Tianshan, Xinjiang. Gondwana Research 22, 325–40.Google Scholar
Zhang, Z., Xiao, X., Wang, J., Wang, Y. & Kusky, T. M. 2008. Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China: Geochemical constraints on mantle source characteristics and petrogenesis. Journal of Asian Earth Sciences 31, 379403.Google Scholar
Zhao, Z., Mo, X., Dilek, Y., Niu, Y., De Paolo, D. J., Robinson, P., Zhu, D., Sun, C., Dong, G., Zhou, S., Luo, Z. & Hou, Z. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113, 190212.Google Scholar