Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T02:57:05.140Z Has data issue: false hasContentIssue false

Significance of radiolarian age data to the Mesozoic tectoni and sedimentary evolution of the northern Pindos Mountains, Greece

Published online by Cambridge University Press:  01 May 2009

Gregory Jones
Affiliation:
Department of Geology and Geophysics, Grant Institute, West Mains Road, Edinburgh EH9 3JW, Scotland, U.K.
Patrick de Wever
Affiliation:
C.N.R.S.-U.R.A. 1315 et Université Pierre et Marie Curie, Laboratoire de Stratigraphie T15E4, 4, Place Jussieu, 75232 Paris Cédex 05, France
Alastair H. F. Robertson
Affiliation:
Department of Geology and Geophysics, Grant Institute, West Mains Road, Edinburgh EH9 3JW, Scotland, U.K.

Abstract

Radiolarians were extracted from siliceous sediments of the northern Pindos Mountains, in an attempt to establish the chronology of tectonic and stratigraphic events related to the evolution of the Pindos ocean basin. Three separate phases of siliceous sedimentation were identified: (i) (mid-) late Triassic; (ii) mid-late Jurassic and (iii) mid-late Cretaceous. The first two phases are also known from the Pindos and Sub-Pelagonian zones of southern and central Greece, and elsewhere in the Dinarides andHellenides. However, the occurrence of Cretaceous radiolarites in the west central Tethyan region is somewhat unusual. Field observations suggest thatfrom the mid-late Triassic through to the mid Jurassic, radiolarites were deposited on volcanic basement, or were interbedded with sediments associated with the late rifting/spreading stages in the development of the Pindos ocean. Radiolarites of mid-late Jurassic age are commonly interbedded with clastic sediments of ophiolitic derivation. This coincides with a phase of significant compression within the Hellenides, which caused intra-oceanic deformation of the Pindos ophiolite. The ophiolite was subsequently emplaced onto the margin of the Pelagonian microcontinent in latest Jurassic time (Kim-meridgian-early Tithonian), as evidenced by transgressive marine carbonates. However, the Pindos basin survived in reduced form until the early Tertiary, allowing radiolarites to accumulate again within Cretaceous post-tectonic clastic sequences.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktaş, G. & Robertson, A. H. F. 1984. The Maden Complex, S.E. Turkey: evolution of a Neotethyan active margin. In Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 375403. Geological Society of London, Special Publication No. 17.Google Scholar
Aubouin, J., Bonneau, M., CeléT, P., Charvet, J., CléMent, B., DéGardin, J. M., Dercourt, J., FerrièRe, J., Fleury, J. J., Guernet, C., Maillot, H., Mania, J. H., Mansy, J. L., Terry, J., ThiéBault, P., Tsoflias, P. & Verriex, J. J. 1970. Contribution à la géologie des Hellénides: le Gavrovo, le Pinde et la zone ophiolitique subpélagonienne. Annales de la Société Géologique du Nord (Lille) 90, 277306.Google Scholar
Baltuck, M. 1982. Provenance and distribution of Tethyan pelagic and hemipelagic siliceous sediments, Pindos Mountains, Greece. Sedimentary Geology 31, 6388.CrossRefGoogle Scholar
Baumgartner, P. O. 1984. A Middle Jurassic–Early Cretaceous low–latitude radiolarian zonation based on Unitary Associations, and age of Tethyan radiolarites. Eclogae geologicae Helvetiae 77 (3), 729837.Google Scholar
Baumgartner, P. O. 1987. Age and genesis of Tethyan Jurassic radiolarites. Eclogae geologicae Helvetiae 80 (3), 831–79.Google Scholar
Baumgartner, P. O., De Wever, P. & Kocher, R. N. 1980. Correlation of Tethyan Late Jurassic-Early Cretaceous events. Cahiers de Micropaléontologie - 26e Congrès Géologique Internationale (Paris, 7–17 July 1980) 2, 2385.Google Scholar
Brunn, J. H. 1956. Contribution à l'étude géologique du Pinde septentrional et d'une partie de la Macédoine occidentale. Annales Géologiques des Pays Helléniques 7, 358 pp.Google Scholar
Degnan, P. J. & Robertson, A. H. F. 1991. Tectonic and sedimentary evolution of the western Pindos ocean, N.W. Peloponnese, Greece. Bulletin de la Société Géologique de la Grèce 25 (1), 263–73.Google Scholar
Dercourt, J. 1964. Contribution à l'étude géologique d'un secteur du Péloponnèse septentrional. Annales Géologiques des Pays Helléniques 15, 1418.Google Scholar
Dercourt, J., Flament, J. M., Fleury, J. J. & Meillez, F. 1973. Stratigraphie des couches situées sous les radio-larites de la zone de Pindos-Olonos (Grèce). Annales Géologiques des Pays Helléniques 25, 397406.Google Scholar
De Wever, P. 1982. Radiolaires du Trias et du Lias de la Téthys (Systématique, Stratigraphie). Société Géologique du Nord (Lille), Publication 7, 599 pp.Google Scholar
De Wever, P. 1989. Radiolarians, radiolarites and Mesozoic palaeogeography of the Circum-Mediterranean Alpine belts. In Siliceous Deposits of the Tethyan Region (eds Hein, J. R. and Obradović, J.), pp. 3149. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
De Wever, P. & Cordey, F. 1986. Datation directe par les radiolaires de la base et de la partie médiane des radiolarites s.S. de la série du Pinde-Olonos (en Grèce continentale). In Eurorad IV (ed. P. De Wever). Marine Micropalaeontology 11 (1–3), 113–27.CrossRefGoogle Scholar
De Wever, P. & Miconnet, P. 1985. Datation directe des radiolarites du Bassin de Lagonégro (Lucanie, Italie méridionale). Implications et conséquences. Revista Española de Micropaleontologia, Madrid 17 (3), 373402.Google Scholar
De Wever, P. & Origlia-Devos, I. 1982 a. Datations nouvelles par les radiolaires de la série des radiolarites s.l. du pindos-Olonos, Grèce. Comptes Rendus de l' Académie des Sciences (Paris) 294 (2), 1191–8.Google Scholar
De Wever, P. & Origlia-Devos, I. 1982 b. Datation par les radiolaires des niveaux siliceux du Lias de la série du Pinde-Olonos (Presqu'île de Koroni, Péloponèse méridional, Grèce). Geobios (Lyon) 14 (5), 577609.CrossRefGoogle Scholar
De Wever, P., Sanfillipo, A., Riedel, W. R. & Gruber, B. 1979. Triassic radiolarians from Greece, Sicily and Turkey. Micropalaeontology 25 (1),75110.CrossRefGoogle Scholar
De Wever, P., Ricou, L. E. & Fourcade, E. 1986. La fin brutale de l'optimum radiolaritique au Jurassique terminal: l'effet de la circulationocéanique. Comptes Rendus de l' Académie des Sciences, Paris, sér. II, 302 (9), 665–70.Google Scholar
Dumitrica, P. 1970. Cryptocephalic and cryptothoracic Nassellaria in some Mesozoic deposits of Romania. Revue Roumaine de Géologie, de Géophysique et de Géographie, Série Géologie (Bucharest) 14 (1), 45124.Google Scholar
FerriÈRe, J. 1982. Paléogéographie et tectoniques superposées dans les Hellénides internes: les massifs de l' Othrys et du Pélion (Grèce continentale). Société Géologique du Nord (Lille), Publication 8, 970 pp.Google Scholar
FerriÈRe, J., Bertrand, J., Simantov, J. & De Wever, P. 1989. Comparaison entre des formations volcano-détritiques (‘mélanges’) du Malm des Hellénides internes (Othrys, Eubée); implications géodynamiques. Bulletin de la Société Géologique de la Grèce 20, 223–35.Google Scholar
Fleury, J. J. 1980. Les zones de Gavrovo-Tripolitza et du Pinde-Olonos (Grèce Continentale), et Péloponèse du Nord. Evolution d'une plate-forme et d'un bassin dans leur cadre Alpin. Société Géologique du Nord (Lille), Publication 4, 651 pp.Google Scholar
Fourcade, E., Dercourt, J., Gunay, Y., Azema, J., Kozlu, H., Bellier, J.-P., Cordey, F., Cros, P., De Wever, P., Enay, R., Hernandez, J., Lauer, J.-P. & Vrielynck, B. 1990. Stratigraphie et paléogéographie de la marge septentrionale de la plate-forme arabe au Mésozoïque (Turquie du Sud-Est). Bulletin de la Société Géologiquede France, Paris 162 (8), 1, 2539.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1989. A Geologic Time Scale. Cambridge: Cambridge University Press.Google Scholar
Hein, J. R. & Obradović, J. (Eds) 1989. Siliceous Deposits of theTethyan Region. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Iijima, A., Hein, J. R. & Seiver, R. (Eds) 1983. Siliceous Deposits in the Pacific Region. Developments in Sedimentology 36. Amsterdam: Elsevier.Google Scholar
Jacobshagen, V., St Durr, F., Kockel, K. O. & Kowal-Czyk, G. 1978. Structure and geodynamic evolution of the Aegean region. In Alps, Apennines, Hellenides (eds Closs, J., Roeder, D. and Schmidt, K.), pp. 537–64. Stuttgart: Schweizerbart.Google Scholar
Jenkyns, H. C. & Winterer, E. L. 1982. Palaeoceanography of Mesozoic ribbonradiolarites. Earth and Planetary Science Letters 60, 351–75.CrossRefGoogle Scholar
Jones, G. & Robertson, A. H. F. 1991. Tectonostratigraphy and evolution of the Pindos Mountains, northwest Greece. Journal of the Geological Society, London 148, 267–88.CrossRefGoogle Scholar
Jones, G., Robertson, A. H. F. Cann, J. R. 1991. Genesis and emplacement of the supra-subduction zone Pindos ophiolite, northwestern Greece. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (eds Peters, Tj. et al. ), pp. 779807. Dordrecht: Kluwer.Google Scholar
Lippard, S. J., Shelton, A. W. & Gass, I.G. 1986. The Ophiolite of Northern Oman. Geological Society of London, Memoir No. 11.Google Scholar
Mavrides, A., Skourtsis-Coroneou, V. & Tsalia-Mono-Polis, S. 1979. Contribution to the Geology of the Subpelagonian Zone ( Vourinos Area, West Macedonia), pp. 175–95. 6th Colloquium on the Geology of the Aegean Region. Athens: Institute of Geology and Mineral Exploration.Google Scholar
Pessagno, E. A. Jr. & Newport, R. L. 1972. A new technique for extracting radiolaria from radiolarian cherts. Micropalaeontology 18 (2),231–4.CrossRefGoogle Scholar
Robertson, A. H. F. 1991. Origin and emplacement of an inferred Late Jurassic subduction-accretion complex, Euboea, eastern Greece. Geological Magazine 128, 2741.CrossRefGoogle Scholar
Robertson, A. H. F. & Hudson, J. D. 1974. Pelagic sediments in the Cretaceous and Tertiary history of the Troodos Massif, Cyprus. In Pelagic Sediments on Land and Under the Sea (eds Hsü, K. J. and Jenkyns, H. C.), pp. 403–36. Special Publication of the International Association of Sedimentologists 1.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1981. Gödene Zone, Antalya Complex, S.W. Turkey: volcanism and sedimentation on Mesozoic marginal oceanic crust. Geologische Rundschau 70, 1177–214.CrossRefGoogle Scholar
Robertson, A. H. F., Blome, C. D., Cooper, D. W. J., Kemp, A. E. S. & Searle, M. P. 1991 a. Evolution of the Arabian continental margin in the Dibba Zone, Northern Oman mountains. In Geology and Tectonics of the Oman Region (eds Robertson, A. H. F., Searle, M. P. and Ries, A. C.), pp. 251–84. Geological Society of London, Special Publication No. 49.Google Scholar
Robertson, A. H. F., Clift, P. D., Degnan, P. J. & Jones, G. 1991 b. Palaeogeographic and palaeotectonic evolution of the eastern Mediterranean Neotethys. Palae-oceanography, Palaeoclimatology, Palaeoecology 87, 289343.CrossRefGoogle Scholar
Robertson, A. H. F., Kemp, A. E. S., Rex, D. C. & Blome, C. D. 1991 c. Sedimentary and structural evolution of a continental margin transform lineament: the Hatta Zone, Northern Oman Mountains. In Geology and Tectonics of the Oman Region (eds Robertson, A. H. F., Searle, M. P. and Ries, A. C.), pp. 285306. Geological Society of London, Special Publication No. 49.Google Scholar
Smith, A. G. 1979. Othris, Pindos and Vourinos Ophiolites and the Pelagonian Zone, pp. 1369–74. 6th Colloquium on the Geology of the Aegean Region. Athens: Institute of Geology and Mineral Exploration.Google Scholar
Smith, A. G., Woodcock, N. H. & Naylor, M. A. 1979. The structural evolution of a Mesozoic continental margin, Othris Mountains, Greece. Journal ofthe Geological Society of London 146, 589603.CrossRefGoogle Scholar
Spray, J. G., Bebien, J., Rex, D. C. & Roddick, J. C. 1984. Age constraintson the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 619–27. Geological Society of London, Special Publication No. 17.Google Scholar
Terry, J. P. 1971. Sur l'âge Triassique de laves associées à la nappe ophiolitique du Pinde septentrional (Epiré et Macédoine, Grèce). Comptes Rendus sommaires de la Société Géologique de France, 384–5.Google Scholar
Terry, J. P. 1975. Echo d'une tectonique Jurassique: les phénomènes de rédimentation dans le secteur de la nappe desophiolites du Pinde septentrional (Grèce). Comptes Rendus sommaires de la Société Géologique de France, 49–51.Google Scholar
Terry, J. P. & Mercier, M. 1971. Sur l'existence d'une séie détritique berriasienne intercalée entre la nappe des ophiolites et le flysch Eocène de la nappe du Pinde (Pinde septentrional, Grèce). Comptes Rendus sommaires de la Société Géologique de France, 71–3.Google Scholar
Tippit, P. R., Pessagno, E. A. & Smewing, J. D. 1981. The biostratigraphy of sediments in the volcanic unit of the Samail ophiolite. Journal of Geophysical Research 86, B4, 2756–62.CrossRefGoogle Scholar
Vergely, P. 1984. Tectonique des ophiolites dans les Hellénides internes. Conséquences sur l'évolution des régions Téthysiennes occidentales. Thèse de l'université de Paris Sud, Orsay (published thesis).Google Scholar
Vrielynk, B. & Granlund, A. 1989. Genetab: a basic program for editing stratigraphic range charts. Computers and Geosciences 15 (5), 789–97.CrossRefGoogle Scholar
Williams, H. & Smyth, W. R. 1973. Metamorphic aureoles beneath ophiolite suites and Alpine peridotites: tectonic implications with west Newfoundland examples. American Journal of Science 273, 594621.CrossRefGoogle Scholar
Yao, A., Matsuda, T. & Isozaki, Y. 1980. Triassic and Jurassic radiolariansfrom the Inuyama area, central Japan. Journal of Geosciences, Osaka City University 23, 135–54.Google Scholar