Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T04:09:51.240Z Has data issue: false hasContentIssue false

Sclerotinite in Coal—its Petrology and Classification

Published online by Cambridge University Press:  01 May 2009

G. H. Taylor
Affiliation:
Commonwealth Scientific and Industrial Research Organization, Division of Coal Research, P.O. Box 175, Chatswood, New South Wales, Australia.
A. C. Cook
Affiliation:
Commonwealth Scientific and Industrial Research Organization, Division of Coal Research, P.O. Box 175, Chatswood, New South Wales, Australia.

Abstract

Some thousands of Australian coal samples have been studied at the Division of Coal Research, C.S.I.R.O. On the basis of these studies, the present usage of the term “sclerotinite” is considered and possible justifications for the retention of this maceral category are outlined and discussed. No characteristic differences in physical properties, form, or utilization behaviour have been found whereby sclerotinite may be distinguished from the other macerals of the inertinite group. Most of the material which has been referred to as sclerotinite is probably not fossil fungus. The “discrete body” category of sclerotinite may well represent fusinized resin bodies, while the more extensive material represents degraded plant tissue. There would appear to be no case for the retention of the maceral category sclerotinite, and alternative means are suggested of classifying for petrographic analysis material which has hitherto been regarded as coming within this category.

Type
Articles
Copyright
Copyright © Cambridge University Press 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramski, C., Mackowsky, M. Th., Mantel, W., and Stach, E., 1951. Atlas für angewandte Steinkohlenpetrographie. Verlag Glückauf G.m.b.H. Essen.Google Scholar
Bailey, I. W., and Kerr, T., 1935. The visible structure of the secondary wall and its significance in physical and chemical investigations of tracheary cells and fibres. J. Arn. Arb., 16, 273300.Google Scholar
Benes, K., 1960 a. Die Fungidurite aus dem Perm Siberiens. Freiberg. Forschungsh., C86.Google Scholar
Bense, K., 1960 b. Beitrag zur Kenntnis der kohlig erhaltenen fossilen Pilze. Freiberg. Forschungsh., C86. 51–3.Google Scholar
Chandra, D., 1956. The microconstituents of coal, with special reference to reflectivity. Ph.D. thesis, University of London.Google Scholar
Cross, A., 1951. in Stach E. 1951. Heutiger Stand der genetischen Deutung der Kohlegefügebestandteile. Compte rendu IIIe Congr. de. strat. et de géol. du Carbonifère, Heerlen, 585590.Google Scholar
Duparque, A., and Delattre, C., 19531954. Caractéristiques microscopiques des sclérotes et spores de champignons des houilles et des anthracites. Ann. Soc. géo. du Nord, 73, 247268.Google Scholar
Ellis, D. 1918. Phycomycetous fungi from the English Lower Coal Measures. Proc. roy. Soc. Edin., 38, 130145.Google Scholar
Hacquebard, P. A. 1952. Opaque matter in coal. Econ. Geol., 47, 494516.CrossRefGoogle Scholar
Havlena, V., 1956. Reste karbonischer Pilze und die Folgen ihrer Zersetzungstätigkeit an Megasporen und Kutikulen. Palaeont. Z., 30, 163—8.CrossRefGoogle Scholar
International Committee for Coal Petrology Nomenclature, 1957. Published by the Committee (Krefeld, W. Germany, Philadephiastrasse 156).Google Scholar
Jeffrey, E. C., and Chrysler, M. A., 19051906. The lignites of Brandon. Rept. Vermont State Geol., 195201.Google Scholar
Kosanke, R. M., and Harrison, J. A., 1957. Microscopy of the resin rodlets of Illinois coal. III. Geol. Surv. Circ.. 234.Google Scholar
Musyal, S. A., 1959. Microhardness of coals (in Russian). Akademiya Nauk SSSR, Institut goryughikh iskopaemykh (I.G.I.), Trudy, 8, 3144.Google Scholar
Schopf, J. M., 1952. Was decay important in origin of coal? Jour. sediment. Petrol., 22, 61–9.Google Scholar
Stach, E., 1934. Sklerotien in der Kohle. Glückauf, 70, 297304.Google Scholar
Stach, E., 1951. Heutiger Stand der genetischen Deutung der Kohlengefügebestandteile. Compte rendu IIIe Congr. de strat. et de géol. du Carbonifère, Heerlen, 585590.Google Scholar
Stach, E., 1956. La sclérotinite et son importance pouré origine de la durite. Proc. Int. Comm. Coal Petrology, No. 2, Liège, 56–8.Google Scholar
Stach, E., and Chandra, D., 1956. Petrographische Studien am Braunkohlensklerotinit. Braunkohle, 8, 465471Google Scholar
Stach, E., and Pickhardt, W., 1957. Pilzreste (Sklerotinit) in paläozoischen Steinkohlen. Palaeont. Z., 31, 139162.CrossRefGoogle Scholar
Stopes, M. C., 1935. On the petrology of banded bituminous coal. Fuel, 14, 413.Google Scholar
Taylor, G. H., and Warne, S. St. J., 19581960. Some Australian coal petrological studies and their geological implications. First Int. Congr. on Coal Petrology, Heerlen, 1958. Proc. Int. Comm. Coal Petrology, No. 3, 1960, 7583.Google Scholar
Teichmüller, M., 1950. Zum petrographischen Aufbau und Werdegang der Weichbraunkohle. Geol. Jahrb., 64, 429488.Google Scholar