Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T05:25:39.908Z Has data issue: false hasContentIssue false

Rift formation in the Gökova region, southwest Anatolia: implications for the opening of the Aegean Sea

Published online by Cambridge University Press:  01 May 2009

N. Görür
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
A. M. C. Sengör
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
M. Sakinü
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
R. Akkök
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
E. Yiğitbaş
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
F. Y. Oktay
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
A. Barka
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
N. Sarica
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey
B. Ecevitoğlu
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeofizik Bölümü, 80626 Ayazağa, Istanbul, Turkey
E. Demirbağ
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeofizik Bölümü, 80626 Ayazağa, Istanbul, Turkey
Ş. Ersoy
Affiliation:
İstanbul Üniversitesi, Deniz Bilimleri ve İşletmeciliği Enstitüsü, 34470, Vefa, Istanbul, Turkey
O. Algan
Affiliation:
İstanbul Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü 34840, Avcilar, Istanbul, Turkey
C. Güneysu
Affiliation:
İstanbul Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü 34840, Avcilar, Istanbul, Turkey
A. Aykol
Affiliation:
İ.T.Ü. Maden Fak¨ltesi, Jeoloji Bölümü, 80626 Ayazağa, Istanbul, Turkey

Abstract

The time of the onset and the nature of the extension in the Aegean area have been problematic owing to the confusion of neotectonic replacement structures with neotectonic revolutionary structures. This paper concerns two rift systems of different ages and orientations in the Gökova region of southwestern Anatolia. The first system has a northwest—southeast trend with a Middle to Upper Miocene infill, whereas the second system is orientated in an east—west direction and filled with Plio-Quaternary rocks. Structural and palaeomagnetic data indicate that the first system originally had a north—south trend, and then bodily rotated anticlockwise to its present orientation before the end of the Miocene. Both the orientations and the structural patterns of these cross-cutting rift systems suggest that they resulted from two different and successive tectonic régimes. Regional geology suggests that the generative régime of the older system was characterized by north—south compression and related to the palaeotectonic evolution of southwestern Anatolia, whereas that of the younger system is characterized by north-south extension and relates to the neotectonic evolution of this region. This inference contradicts, at least in southwestern Anatolia, some recent claims that the extensional tectonics and the related rift formation in the Aegean region began in the early Miocene, with the alleged demise of the compressional palaeotectonics during the late Oligocene, but is consistent with older views that placed the onset of north—south extension into the later middle Miocene. The formation of the Aegean Sea seems to be the result of these two complicated and contrasting, succesive tectonic regimes that have affected this region since middle Miocene times.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atalay, Z., 1980. Muğla-Yatağan ve yakin dolayi karasal Neojeninin stratigrafi arştirmasi. Türkiye Jeoloji Kurumu Bülteni 23, 93–9.Google Scholar
Barka, A., Sakinç, M., Görür, N., Yilmaz, Y., Sengör, A. M. C., & Ediger, V. 1994. Is Aegean extension a consequence of the westerly escape of Turkey? EOS Transactions of the American Geophysical Union 75, 116–17.Google Scholar
Becker-Platen, J. D., 1970. Lithostratigraphisce Untersuchungen im Känozoikum S¨dwest-Anatoliens (Türkei). Beihefte zum geologischen Jahrbuch 97, 244 pp.Google Scholar
Becker-Platen, J. D., Sickenberg, D. Q., & Tobien, H., 1975. Die Gliederung der känozoischen Sedimente der Türkei nach Vertebraten-Faunengruppen. Geologisches Jahrbuch B15. 47101.Google Scholar
Benda, L., 1971. Principles of the palynologic subdivision of the Turkish Neogene. Newsletter Stratigraphy 1 –3, 2326.CrossRefGoogle Scholar
Benda, L., Innocenti, F., Radicati, R. F., & Steffens, P., 1974. Stratigraphic and radiometric data of the Neogene in Northwest Turkey. Zeitschrift der Deutschen Geologischen Gesellschaft 125, 183–93.CrossRefGoogle Scholar
Berckhemer, H., 1977. Some aspects of the evolution of marginal seas deduced from observations in the Aegen region. In Structural History of the Mediterranean Basins (eds Biju-Duval, B. and Montadert, L.), pp. 303–13. Paris: Editions Technip.Google Scholar
Besang, C., Eckhard, F. J., Harre, W., Kreuzer, H., & Muller, P. 1977. Radiometrische Altersbestimmungen an Neogenen Eruptivgesteinen der Turkei. Geologisches Jahrbuch B25, 336.Google Scholar
Böger, H. 1978. Sedimentary history and tectonic movements during the late Neogene. In Alps, Appenines, Hellenides (eds Closs, H., Roeder, D., and Schmidt, K.), pp. 510–12. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
Brinkmann, R. 1976. Geology of Turkey. Stuttgart: Enke, 158 pp.Google Scholar
Brunn, J. H., de Graciansky, P. C., Gutnic, M., Juteau, T. H., Lefevre, R., Marcoux, J., Monod, O., & Poisson, A. 1970. Structures majeurs et correlations stratigraphiques dans les Taurides occidentales. Bulletin de la Société géologique de France (7) 12, 515–56.CrossRefGoogle Scholar
Brunn, J. H., Dumont, J. F., de Graciansky, P. C., Gutnic, M., Juteau, T., Marcoux, J., & Poisson, A., 1971. Outline of the geology of the Western Taurides. In Geology and History of Turkey (ed. Campwell, A. S.), pp. 225–57. Tripoli: Petroleum Exploration Society of Libya.Google Scholar
Chaput, E. 1936. Voyages d’Études géologiques et géomorphogeniques en Turquie: Mémoires de l’ Institut francais d’ Archéologie de Stamboul De Boccard, E., Paris 2, 312 pp.Google Scholar
Chen, Z.-M., 1981. Structural origin of lakes on the Xizang Plateau. In Geological and Ecological Studies of Qinghai Xizang plateau, vol. 2 (ed. Liu, D.S.), pp. 1769–76. Beijing: Science Press.Google Scholar
de Graciansky, P. C., 1968. Teke yanmadasi (Likya) Toroslan’nin üst üste gelmis ünitelerinin stratigrafisi ve Dinaro-Toroslar’daki yeri. Maden Tetkik ve Arama Enstitüsü Dergisi 71, 7392.Google Scholar
de Graciansky, P. C., 1972. Reserches géologiques dans le Taurus Lycien occidental. Thèse Doctorat d’Etat, Université de Paris-Sud Orsay no. 896, 762 pp.Google Scholar
de Graciansky, P. C., Lemoine, M., Lys, M., & Sigal, J. 1967. Une coupe stratigraphique dans le Paléozoique Supérieur et le Mésozoique à l’extrémité occidentale de la chaine sud-anatolienne. Bulletin of Mineral Research Exploration Institute of Turkey 69, 1033.Google Scholar
de Graciansky, P. C., Lorenz, C., & Magne, J. 1970. Sur les étapes de la transgression du Miocéne inférieur observée dans les fenêtres de Göcek (Sud-Ouest de la Turquie). Bulletin de la Société géologique de France (7) 12, 557–64.CrossRefGoogle Scholar
de Graciansky, P. C., & Lys, M. 1968. Présence d’une microfaune d’age ladinien probable dans l’une des uniteés allochtones du Taurus occidental (Turquie). Comptes-rendus hébdomadaire de l’ Académic des Sciences de Paris 267, 36–8.Google Scholar
Delaune-Mayere, M., Marcoux, J., Parrot, J. F., & Poisson, A., 1977. Modéle d’ évolution Mésozoique de la paléomarge Tethysienne au niveau des nappes radiolaritiques et ophiolitiques du Taurus lycien, d’Antalya et du Baër-Bassit. In Structural History of the Mediterranean Basins (eds Biju-Duval, B. and Montadert, L.), pp. 7994. Paris: Editions Technip.Google Scholar
Dermitzakis, M. D., & Papanikolaou, D. J., 1981. Paleogeography and geodynamics of the Aegean region during the Neogene. Annales Géologiques Des PaysHelleniques (hors ser.) 4, 245–89.Google Scholar
Dewey, J., & Sengor, A. M. C., 1976. A diffuse boundary with graben complexes between the Aegean and Anatolian plates. EOS Transactions of the American Geophysical Union 57, 1003.Google Scholar
Dewey, J. F. & Sengor, A. M. C., 1979. Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin 90, 8492.2.0.CO;2>CrossRefGoogle Scholar
Dumont, J. F., Uysal, Ş., Şjmşek, Ş., Karamanderesi, İ. H., & Letouzey, J., 1979. Formation of the grabens in Southwestern Anatolia. Bulletin of the Mineral Research and Exploration Institute of Turkey 92, 718.Google Scholar
Ersoy, Ş. 1991. Datça (Muğla) yanmadasinin stratigrafisi ve tektoniği. Türkiye Jeoloji Kurumu Bülteni 34 /2, 114.Google Scholar
Fabricius, F. H., 1984. Neogene to Quaternary geodynamics of the area of the Ionian sea and surrounding land masses. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 819–24. Geological Society, London, Special Publication no. 17.Google Scholar
Gutnic, M., Monod, O., Poisson, A., & Dumont, J. F., 1979. Géologie des Taurides occidentales (Turquie). Memoires de la Société géologique de France 137, 112 pp.Google Scholar
Hayward, A. B., 1984. Miocene clastic sedimentation related to the emplacement of the Lycian nappes and the Antalya complex, SW Turkey. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A.H.F.), pp. 287300. Geological Society, London, Special Publication no. 17.Google Scholar
Jackson, J. A., King, G. C. P., & Vita-Finzi, C., 1983. Neotectonics of the Aegean: an alternative view. Earth and Planetary Science Letters 61, 303–18.CrossRefGoogle Scholar
Jackson, J. A., & McKenzie, D. 1984. Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society 77, 185264.Google Scholar
Jacobshagen, V., Dörr, S., Kockel, F., Kopp, K. O., & Kowalczyk, G. with contributions of Berkhemer, H., & Büttner, D. 1978. Structure and geodynamic evolution of the Aegean region. In Alps, Appenines, Hellenides (eds Closs, H., Roeder, D. and Schmidt, K.), pp. 537–64. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
Jacobshagen, V., & Scala, W. 1977. Geologie der NordSporaden und die Strukturprägung auf der Mittelägäischen Inselbrücke. Annales Géologiques des Pays Helleniques 28, 233–74.Google Scholar
Kaaden, G. van der, & Metz, K., 1954. Datça-Muğla-Dalaman Cayi (SW Anadolu) arasindaki bölgenin jeolojisi. Türkiye Jeoloji Kurumu Bülteni 1 –2, 71171.Google Scholar
Kapan, S., & Taner, G., 1994. Stratigraphy and Neogene Molluscan fauna of the Datça peninsula (Muğla, Turkey). Abstracts of the 47th Geological Congress of Turkey, Chamber of Geological Engineers of Turkey, p. 15.Google Scholar
Kayan, İ., 1988. Late Holocene sea-level changes on the Western Anatolian coast. Palaeogeography, Palaeoclimatology, Palaeoecology 68, 205–18.CrossRefGoogle Scholar
Kissel, C., Averbuch, O., de Lamotte, D. F., Monod, O., & Allerton, S., 1993. Preliminary paleomagnetic evidence of a post-Eocene clockwise rotation of the Western Taurides thrust belt, east of Isparta reentrant (Soutwestem Turkey). Earth and Planetary Science Letters 117, 114.CrossRefGoogle Scholar
Le Plchon, X., & Angelier, J., 1979. The Hellenic arc and trench system: a key to the tectonic evolution of the Eastern Mediterranean area. Tectonophysics 60, 142.Google Scholar
Le Pichon, X., & Angelier, J., 1981. The Aegean sea. Philosophical Transactions of the Royal Society of London A 300, 357–72.Google Scholar
Mein, P., 1989. Updating of MN zones. In European Neogene Mammal Chronology (eds Lindsay, E. H., Fahlbusch, V. and Mein, P.), pp. 7390. NATO ASI Series, Series A: Life Sciences vol. 180.Google Scholar
Meulenkamp, J. E., 1977. The Aegean and the Messinian salinity crisis. Proceedings of 6th Colloquium on the Geology of the Aegean Region 3, 1253–63.Google Scholar
Okay, A. I., 1989. Tectonic units and sutures in the Pontides, Northern Turkey. In Tectonic Evolution of the Tethyan Region (ed. Şengör, A. M. C.), pp. 109–16. NATO ASI Series, Series C: Mathematical and Physical Sciences vol. 259.CrossRefGoogle Scholar
Okay, A. İ., & Siyako, M., 1993. The new position of the Izmir-Ankara Neo-Tethyan suture between Izmir and Bahkesir. In Tectonics and hydrocarbon potential of Anatolia and surrounding regions (ed. Turgut, S.), pp. 333–55. Proceedings of the Ozan Sungurlu Symposium, Ankara.Google Scholar
Ori, G. G., & Friend, P. F., 1984. Sedimentary basins formed and carried piggyback on active thrust sheets. Geology 12, 475–8.2.0.CO;2>CrossRefGoogle Scholar
Orombelli, G., Lozej, G. P., & Rossi, L. A. 1967. Preliminary notes on the Daçe, a peninsula (SW Turkey). Accademia Lincei — Rendiconti Scienze Fisice, Matematice e Naturali XLII, 830–41.Google Scholar
Philippson, A., 1910–1915. Reisen und Forschungen im Westlichen Kleinasien. Ergänzungshefte 167, 172, 177, 180, 183 der Petermanns Mitteilungen, Gotha, Justus Perthes.Google Scholar
Poisson, A., 1977. Recherches géologiques dans les Taurides occidentales. Thèse Doctorat d’Etat, Université de Paris-Sud Orsay no. 1902, 795 pp.Google Scholar
Sengör, A. M. C., 1979. The North Anatolian transform fault; its age, offset and tectonic significance. Journal of the Geological Society, London 136, 269–82.CrossRefGoogle Scholar
Sengör, A. M. C., 1982. Ege’nin neotektonik evrimini yöneten etkenler. In Ban Anadolu’nun Genç Tektonigi ve Volkanizmasi Paneli (eds Erol, O. and Öygür, V.), pp. 5972. Ankara: Türkiye Jeoloji Kurumu.Google Scholar
Sengor, A. M. C., 1987. Cross-faults and differential streching of hanging walls in regions of low angle normal faulting: Example from Western Turkey. In Continental extensional tectonics (eds Coward, M. P., Dewey, J. F. and Hancock, P. L.), pp. 575–89. Geological Society, London, Special Publication no. 28.Google Scholar
Sengör, A. M. C., 1995. Sedimentation and tectonics of fossil rifts. In Tectonics and sedimentation (eds Ingesoll, R. and Sperra, K. Busby), pp. 53117. Oxford: Blackwell.Google Scholar
Sengör, A. M. C., & Dewey, J. F., 1985. Post-Oligocene tectonic evolution of the Aegean and neighboring regions: relations to the North Anatolian Transform fault. In VI. Colloquium on Geology of the Aegean Region, 19th September—4th October, 1977 (eds Izdar, E. and Nakoman, E.), pp. 639–47. Izmir: Dokuz Eylül Üniversitesi.Google Scholar
Sengör, A. M. C., Görür, N. & Şaroğlu, F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-slip deformation, basin formation and sedimentation (eds Biddle, K. T. and Christie-Blick, N.), pp. 227–64. Society of Economic Paleontologists and Mineralogists, Special Publication no. 37.CrossRefGoogle Scholar
Sengör, A. M. C., Satir, M., & Akkök, R., 1984. Timing of tectonic events in the Menderes massif, Western Turkey: Implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3, 693707.CrossRefGoogle Scholar
Sengör, A. M. C., & Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181241.CrossRefGoogle Scholar
Seyitoğlu, G., & Scott, B. C., 1991. Late Cenozoic crustal extension and basin formation in West Turkey. Geological Magazine 128, 155–66.CrossRefGoogle Scholar
Seyitoğlu, G., & Scott, B. C., 1992. The age of the Büyük Menderes graben (West Turkey) and its tectonic implications. Geological Magazine 129, 239–42.CrossRefGoogle Scholar
Seyitoğlu, G., Scott, B. C., & Rundle, C. C., 1992. Timing of Cenozoic extensional tectonics in West Turkey. Journal of the Geological Society, London 149, 533–8.CrossRefGoogle Scholar
Steinenger, F. F., & Rögl, F., 1984. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 659–68. Geological Society, London, Special Publication no. 17.Google Scholar
Tapponier, P., Mercier, J. L., Armuo, R., Tonglin, H., & Ji, Z., 1981. Field evidence for active normal faulting in Tibet. Nature 294, 410–14.CrossRefGoogle Scholar
Taymaz, T., Jackson, J. A., & McKenzie, D., 1991. Active tectonics of the north and central Aegean Sea. Geophysical Journal International 106, 433–90.CrossRefGoogle Scholar
Üşenmez, Ş., Varol, B., Friedman, G. M., & Tekin, E., 1993. Modern ooids of Cleopatra beach, Gökova (south of Aegean sea) Turkey: results from petrography and scanning electron microscopy. Carbonates and Evaporates 8, 18.CrossRefGoogle Scholar
Whitechurch, H., Juteau, T., & Montigny, R., 1984. Role of the Eastern Mediterranean ophiolites (Turkey, Syria, Cyprus) in the history of the Neo-Tethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A.H.F.), pp. 301–18. Geological Society, London, Special Publication no. 17.Google Scholar
Zeschke, G., 1954. Der Simav-Graben und seine Gesteine. Türkiye Jeoloji Kurumu Bülteni 5, 179–89.Google Scholar