Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T05:50:26.287Z Has data issue: false hasContentIssue false

Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating

Published online by Cambridge University Press:  01 May 2009

A. J. Hurford
Affiliation:
Laboratory for Isotope Geology, University of Bern, Erlachstrasse 9a, 3012 Bern, Switerland
F. J. Fitch
Affiliation:
Department of Geology, Birkbeck College, University of London, 7/15 Gresse Street, London W1P 1PA
A. Clarke
Affiliation:
Department of Geology, Birkbeck College, University of London, 7/15 Gresse Street, London W1P 1PA

Abstract

Modes in the frequency of distribution of fission track ages obtained from detrital zircon grains may prove characteristic of individual sandstone bodies, supporting the identification of the sources from which a particular flow of sedimentary detritus was derived and thus allowing new inferences to be made concerning palaeogeography. A computer program has been written and used to identify modes in the zircon fission track age distribution within two Lower Cretaceous sandstone samples from the Weald of southern England. Pronounced modes appear in one rock around 119 Ma, 160 Ma, 243 Ma and 309 Ma and in the other around 141 Ma, 175 Ma, 257 to 277 Ma and 394 to 453 Ma. The geological implications of these quite dissimilar zircon age spectra are discussed. It is concluded that they support the palaeogeographical models of Allen (1981) and indicate that the provenance of the first sample, from the Top Ashdown Sandstone member at Dallington in East Sussex, was almost entirely southerly, while that of the second, from the Netherside Sand member at Northchapel in West Sussex, was more varied, but predominantly westerly and northerly.

Type
Articles
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P., 1947. Notes on Wealden fossil soil-beds. Proceedings of the Geologists' Association 57, 303–14.CrossRefGoogle Scholar
Allen, P., 1949. Wealden petrology: the Top Ashdown Pebble bed and the Top Ashdown Sandstone. Quarterly Journal of the Geological Society of London 104, 257321.CrossRefGoogle Scholar
Allen, P., 1959. The Wealden environment: Anglo-Paris basin. Philosophical Transactions of the Royal Society B 242, 283346.Google Scholar
Allen, P., 1972. Wealden detrital tourmaline: implications for northwestern Europe. Journal of the Geological Society of London 128, 273–88.CrossRefGoogle Scholar
Allen, P., 1975. Wealden of the Weald: a new model. Proceedings of the Geologists' Association 86, 389436.CrossRefGoogle Scholar
Allen, P., 1981. Pursuit of Wealden models. Journal of the Geological Society of London 138, 375405.CrossRefGoogle Scholar
Carte géologique de la France et de la marge continentale à l'échelle de 1/1500000 (including Notice Explicative). 1980. Orléans: Bureau de Recherches Géologiques et Minières.Google Scholar
Chauris, L., Dangeard, L., Graindor, M. J., & Lapparent, A. F., 1956. Les principaux batholites granitiques du Bocage normand sont antérieurs à la transgression cambrienne. Compte rendu sommaire des séances de la Société Géologique de France 243, 7780.Google Scholar
Cosgrove, M.E., & Elliott, M.H., 1976. Suprabatholithic volcanism of the southwest England granites. Proceedings of the Ussher Society 5, 7680.Google Scholar
Dixon, J. E., Fitton, J.G., & Frost, R.T.C., 1981. The tectonic significance of post-Carboniferous igneous activity in the North Sea Basin. In Petroleum Geology of the Continental Shelf of North West Europe (ed. Illing, L. V. and Hobson, G. D.), pp. 121–37. London: Institute of Petroleum.Google Scholar
Gleadow, A. J. W., Hurford, A. J., & Quaife, R. D., 1976. Fission track dating of zircon: improved etching techniques. Earth and Planetary Science Letters 33, 273–6.CrossRefGoogle Scholar
Gleadow, A. J. W., & Lovering, J. F., 1977. Geometry factor for external track detectors in fission track dating. Nuclear Track Detection 1, 99106.CrossRefGoogle Scholar
Graindor, M. J., & Wasserburg, G. J., 1962. Déterminations d'âges absolus dans le nord du Massif armoricain. Compte rendu sommaire des séances de la Société Géologique de France 254, 3875–7.Google Scholar
Green, P. F., 1981. A new look at statistics in fission track dating. Nuclear Tracks 5, 7780.CrossRefGoogle Scholar
Harrison, R. K., Jeans, C. V., & Merriman, R. J., 1979. Mesozoic igneous rocks, hydrothermal mineralisation and volcanogenic sediments in Britain and adjacent regions. Bulletin of the Geological Survey of Great Britain 70, 5769.Google Scholar
Hatch, F. H., Wells, A. K., & Wells, M. K., 1961. The Petrology of the Igneous Rocks. London: Murby.Google Scholar
Howitt, F., Aston, E. R., & Jaque, M., 1975. The occurrence of Jurassic Volcanics in the North Sea. In Petroleum and the Continental Shelf of North West Europe (ed. Woodland, A. W.), pp. 379–88. London: Institute of Petroleum.Google Scholar
Hurford, A. J., & Gleadow, A. J. W., 1977. Calibration of fission track dating parameters. Nuclear Track Detection 1, 41–8.CrossRefGoogle Scholar
Hurford, A. J., & Green, P. F., 1981. A reappraisal of neutron dosimetry and uranium-238 λf values in fission track dating. Nuclear Tracks 5, 5361.CrossRefGoogle Scholar
Hurford, A. J., & Green, P. F., 1983. The Zeta calibration of fission track dating. Isotope Geoscience 1, 285317.Google Scholar
Jeans, C. V., Merriman, R. J., Mitchell, J. G., & Bland, D. J., 1982. Volcanic Clays in the Cretaceous of Southern England and Northern Ireland. Clay Minerals 17, 105–56.CrossRefGoogle Scholar
Laming, D. J. C., 1966. Imbrication, palaeocurrents and other sedimentary features in the Lower New Red Sandstone, Devonshire, England. Journal of Sedimentary Petrology 36, 940–59.Google Scholar
Lees, G. J., 1974. Petrochemistry of the mica-lamprophyres (minettes) of Jersey (C.I.). Proceedings of the Ussher Society 3, 149–55.Google Scholar
Leutwein, F., Chauris, L., Sonet, J., & Zimmerman, J.-L., 1969. Etudes géochronologiques et géotectoniques dans le Nord-Finistère (Massif Armoricain). Sciences de la Terre 14, 329–58.Google Scholar
Miller, J. A., & Mohr, P. A., 1964. Potassium-argon measurement on the granites and some associated rocks from southwest England. Geological Journal 1, 105–26.CrossRefGoogle Scholar
Miller, J. A., Shibata, K., & Munro, M., 1962. The potassium-argon age of the lava at Killerton Park, near Exeter. Geophysical Journal 6, 394–6.CrossRefGoogle Scholar
Tidmarsh, W. G., 1932. The Permian Lavas of Devon. Quarterly Journal of the Geological Society of London 28, 712–42.CrossRefGoogle Scholar
Woodhall, D., & Knox, R. W.O'B., 1979. Mesozoic volcanism in the North Sea and adjacent areas. Bulletin of the Geological Survey of Great Britain 70, 3456.Google Scholar