Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T12:20:49.615Z Has data issue: false hasContentIssue false

Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterranean area: a review of geochemical proxies

Published online by Cambridge University Press:  09 January 2017

FRANCESCO PERRI*
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
*
*Author for correspondence: [email protected]

Abstract

The Triassic–Jurassic rift-valley stage of Tethyan rifting in the Western-Central Mediterranean area is characterized by a development of a puzzle of plates and microplates with the deposition of continental redbeds (in the internal domains of the Gibraltar Arc and Calabria–Peloritani Arc) that can be considered a regional lithosome. This paper aims to reconstruct the chemical weathering conditions of the Triassic–Jurassic boundary in the Western-Central Mediterranean area using the geochemical and mineralogical composition of continental redbed mudrocks of Mesozoic age. The mudrocks from the Calabria–Peloritani Arc show higher values of weathering (mobility) indices (αMg=(Al/Mg)sed/(Al/Mg)UCC; αK=(Th/K)sed/(Th/K)UCC; αBa=(Th/Ba)sed/(Th/Ba)UCC) than the Gibraltar Arc samples. Furthermore, the CIA (Chemical Index of Alteration) and MIA (Mineralogical Index of Alteration) values and the ‘Rb-type indices’ (e.g. Rb/Sr and Rb/K ratios) are higher for the Calabria–Peloritani Arc mudrocks than the Gibraltar Arc samples. All these geochemical proxies closely resemble each other and show similar variations suggesting climatic changes towards humid conditions through the Uppermost Triassic to Lowermost Jurassic that favoured chemical weathering conditions. This period is probably characterized by seasonal climate alternations corresponding to an increase in palaeoclimatic humidity. The mineralogical compositions of the Mesozoic mudrocks further confirm these indications as shown by a higher abundance of kaolinite, related to warm–humid conditions, in the Calabria–Peloritani Arc mudrocks than in those of the Gibraltar Arc.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldinucci, M., Gandin, A. & Sandrelli, F. 2008. The Mesozoic continental rifting in the Mediterranean area: insights from the Verrucano tectofacies of southern Tuscany (Northern Apennines, Italy). International Journal of Earth Sciences 97, 1247–69.CrossRefGoogle Scholar
Amendola, U., Perri, F., Critelli, S., Monaco, P., Cirilli, S., Trecci, T. & Rettori, R. 2016. Composition and provenance of the Macigno Formation (Late Oligocene-Early Miocene) in the Trasimeno Lake area (northern Apennines). Marine and Petroleum Geology 69, 146–67.Google Scholar
Baudelot, S., Bouillin, J. P., Delga, M. D., Giunta, G. & Olivier, P. 1988. Datazioni palinologiche dell'Hettangiano alla base della trasgressione mesozoica sul ‘Verrucano’ della Sila (Calabria) e dei monti Peloritani (Sicilia). Bollettino della Società Geologica Italiana 107, 5161.Google Scholar
Bauluz, B., Mayayo, M. J., Fernandez-Nieto, C. & Gonzalezlopez, J. M. 2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology 168, 135–50.Google Scholar
Bi, L., Yang, S., Li, C., Guo, Y., Wang, Q., Liu, J. T. & Yin, P. 2015. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes. Geochemistry, Geophysics, Geosystems 16, 3034–52Google Scholar
Bonardi, G., Cavazza, W., Perrone, V. & Rossi, S. 2001. Calabria-Peloritani Terrane and Northern Ionian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (eds Vai, G. B. & Martini, I. P.), pp. 287306. Dordrecht: Kluwer Academic Publishers.Google Scholar
Bouillin, J. P., Mouterde, R., Olivier, P. & Majesté-Menjoulas, C. 1988. Le Jurassique de Longobucco (Calabre, Italie), à la jonction de la Téthys Ligure et de la Téthys Maghrébin. Bulletin de la Société Géologique de France 4, 93103.CrossRefGoogle Scholar
Caracciolo, L., Von Eynatten, H., Tolosana-Delgado, R., Critelli, S., Manetti, P. & Marchev, P. 2012. Petrological, geochemical, and statistical analysis of Eocene–Oligocene sandstones of the Western Thrace Basin, Greece and Bulgaria. Journal of Sedimentary Research 82, 482–98.Google Scholar
Carminati, E., Lustrino, M., Cuffaro, M. & Doglioni, C. 2010. Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. In The Geology of Italy: Tectonics and Life along Plate Margins (eds Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S. & Doglioni, C.). Journal of the Virtual Explorer, Electronic Edition, 36, 9. doi: 10.3809/jvirtex.2010.00226.Google Scholar
Chalouan, A. & Michard, A., 1990. The Ghomarides Nappes, Rif Coastal Range, Morocco: a Variscan chip in the Alpine belt. Tectonics 9, 165–83.Google Scholar
Colin, C., Turpin, L., Blamart, D., Frank, N., Kissel, C. & Duchamp, S. 2006. Evolution of weathering patterns in the Indo-Burman Ranges over the last 280 kyr: effects of sediment provenance on 87Sr/86Sr ratios tracer. Geochemistry, Geophysics, Geosystems 7, Q03007. doi: 10.1029/2005GC000962.Google Scholar
Cox, R., Lowe, D. R. & Cullers, R. L. 1995. The influence of sediment recycling and basement composition of evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta 59, 2919–40.Google Scholar
Crichton, J. G. & Condie, K. C. 1993. Trace elements as source indicators in cratonic sediments: a case study from the Early Proterozoic Libby Creek Group, southeastern Wyoming. Journal of Geology 101, 319–32.CrossRefGoogle Scholar
Critelli, S. 1999. The interplay of lithospheric flexure and thrust accommodation in forming stratigraphic sequences in the southern Appennines foreland basin system, Italy. Rendiconti di Scienze Fisiche e Naturali dell'Accademia dei Lincei 10, 257326.Google Scholar
Critelli, S., Mongelli, G., Perri, F., Martìn-Algarra, A., Martìn-Martìn, M., Perrone, V., Dominici, R., Sonnino, M. & Zaghloul, M. N. 2008. Compositional and geochemical signatures for the sedimentary evolution of the Middle Triassic–Lower Jurassic continental redbeds from Western-Central Mediterranean Alpine Chains. The Journal of Geology 116, 375–86.CrossRefGoogle Scholar
Critelli, S., Muto, F., Tripodi, V. & Perri, F. 2013. Link between thrust tectonics and sedimentation processes of stratigraphic sequences from the southern Apennines foreland basin system, Italy. Rendiconti Online Società Geologica Italiana 25, 2142.Google Scholar
Cullers, R. L. 1995. The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, USA. Chemical Geology 123, 107–31.Google Scholar
De la Horra, R., Galan-Abellan, A. B., Lopez-Gomez, J., Sheldon, N. D., Barrenechea, J. F., Luque, J., Arché, A. & Benito, M. I. 2012. Paleoecological and paleoenvironmental changes during the continental Middle–Late Permian transition at the SE Iberian Ranges, Spain. Global and Planetary Change 94–95, 4661.Google Scholar
Decou, A., Andrews, S. D., Alderton, D. H. M. & Morton, A. 2016. Triassic to Early Jurassic climatic trends recorded in the Jameson Land Basin, East Greenland: clay mineralogy, petrography and heavy mineralogy. Basin Research (online), 116. doi: 10.1111/bre.12194.Google Scholar
Didon, J., Durand Delga, M. & Kornprobst, J. 1973. Homologies géologiques entre les deux rives du détroit de Gibraltar. Bulletin de la Société Géologique de France 15, 77105.Google Scholar
Eberl, D. D. 1984. Clay mineral formation and transformation in rocks and soils. Philosophical Transactions of the Royal Society of London 311, 241–57.Google Scholar
Ehrenberg, S., Aagard, P., Wilson, M., Fraser, A. & Duthie, D. 1993. Depth dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals 28, 325–52.CrossRefGoogle Scholar
El Talibi, H., Zaghloul, M. N., Perri, F., Aboumaria, K., Rossi, A. & El Moussaoui, S. 2014. Sedimentary evolution of the siliciclastic Aptian–Albian Massylian flysch of the Chouamat Nappe (central Rif, Morocco). Journal of African Earth Sciences 100, 554–68.Google Scholar
Elter, P., Grasso, M., Parotto, M. & Mezzani, L. 2004. Structural setting of the Apennine-Maghrebian thrust belt. Episodes 26, 205–11.Google Scholar
Fallot, P. 1937. Essai sur la géologie du Rif septentrional. Notes et Mémoires du Service Géologique, Rabat, Protectorat de la République Français au Maroc 40, 553 pp.Google Scholar
Frey, M. & Robinson, D. 1999. Low-Grade Metamorphism. Oxford: Blackwell Science, 328 pp.Google Scholar
Gaillardet, J., Dupré, B. & Allégrea, C. J. 1999. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta 63, 4037–51.Google Scholar
Guerrera, F., Martín-Algarra, A. & Perrone, V. 1993. Late Oligocene-Miocene syn-, late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova 5, 525–44.CrossRefGoogle Scholar
Guerrera, F. & Martín-Martín, M. 2014. Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western Tethys). Bulletin de la Société Geologique de France 185, 329–41.CrossRefGoogle Scholar
Haas, J., Budai, T. & Raucsik, B. 2012. Climatic controls on sedimentary environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 353, 3144.Google Scholar
Hamdan, J. & Burnham, C. P. 1996. The contribution of nutrients from parent material in three deeply weathering soils of Peninsular Malaysia. Sedimentary Geology 55, 319–22.Google Scholar
Hornung, J. & Aigner, T. 2002. Reservoir architecture in a terminal alluvial plain: an outcrop analogue study (Upper Triassic, Southern Germany) part II: cyclicity, controls and models. Journal of Petroleum Geology 25, 151–78.Google Scholar
Hurst, A. & Irwin, H. 1982. Geological modelling of clay diagenesis in sandstones. Clay Minerals 17, 522.CrossRefGoogle Scholar
Johnsson, M. J. 1993. The system controlling the composition of clastic sediments. In Processes Controlling the Composition of Clastic Sediment (eds Johnsson, M. J. and Basu, A.), pp. 119. Geological Society of America Special Paper 284.Google Scholar
Lentini, F. & Vezzani, L. 1975. Le unità meso-cenozoiche della copertura sedimentaria del basamento cristallino peloritano (Sicilia nord-orientale). Bollettino della Società Geologica Italiana 94, 537–54.Google Scholar
Maate, A. & Martìn-Algarra, A. 1992. Evolution paléogéographique au Lias de la Dorsale calcaire du Haouz et de la couverture des Ghomarides entre El Onsar et El Kouf (Rif septentrional, Maroc). Comptes Rendus de l'Académie des Sciences, Paris 314, 1485–91.Google Scholar
Mariotti, N., Santantonio, M. & Weis, R. 2007. Aalenian-Early Bajocian belemnite assemblage from Peri-Mediterranean Tethyan sediments (Calabria, Southern Italy). Geologica Romana 40, 119.Google Scholar
Martín-Algarra, A. 1987. Evolucion geologica alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Betica. Ph.D. thesis, University of Granada, Spain. Published thesis.Google Scholar
Martín-Algarra, A., Solé de Porta, N. & Maate, A. 1995. El Triásico del Maláguide-Gomáride (Formación Saladilla, Cordillera Bética Occidental y Rif Septentrional). Nuevos datos sobre su edad y significado palaeogeográfico. Cuadernos de Geología Ibérica 19, 249–78.Google Scholar
McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance and tectonics. In Processes Controlling the Composition of Clastic Sediment (eds Johnsson, M. J. & Basu, A.), pp. 2140. Geological Society of America Special Paper 284.Google Scholar
Messina, A., Russo, S., Borghi, A., Colonna, V., Compagnoni, R., Caggianelli, A., Fornelli, A. & Piccarreta, G. 1994. Il Massiccio della Sila Settore settentrionale dell'Arco Calabro-Peloritano. Bollettino della Società Geologica Italiana 113, 539–86.Google Scholar
Messina, A., Somma, R., Macaione, E., Carbone, G. & Careri, G. 2004. Peloritani Continental Crust composition (Southern Italy): geological and petrochemical evidence. Bollettino della Società Geologica Italiana 123, 405–41.Google Scholar
Millot, G. 1964. Géologie des Argiles. Paris: Masson & Cie.Google Scholar
Mongelli, G. 1995. Trace elements distribution and mineralogical composition in the < 2-μm size fraction of shales from the Southern Apennines, Italy. Mineralogy and Petrology 53, 103–14.Google Scholar
Mongelli, G., Critelli, S., Perri, F., Sonnino, M. & Perrone, V. 2006. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochemical Journal 40, 197209.Google Scholar
Moore, D. M. & Reynolds, R. C. 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn. Oxford/New York: Oxford University Press, 332 pp.Google Scholar
Mutti, M. & Weissert, H. 1995. Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (Southern Alps, Italy). Journal of Sedimentary Research 65, 357–67.Google Scholar
Nesbitt, H. W. & Markovics, G. 1997. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta 61, 16531670.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–17.Google Scholar
Nesbitt, H. W., Young, G. M., McLennan, S. M. & Keays, R. R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology 104, 525–42.Google Scholar
Parker, A. 1970. An index of weathering for silicate rocks. Geological Magazine 107, 501–4.Google Scholar
Perri, F. 2008. Clay mineral assemblage of the Middle Triassic-Lower Jurassic mudrocks from Western-Central Mediterranean Alpine Chains. Periodico di Mineralogia 77, 2340.Google Scholar
Perri, F. 2014. Composition, provenance and source weathering of Mesozoic sandstones from Western-Central Mediterranean Alpine Chains. Journal of African Earth Sciences 91, 3243.Google Scholar
Perri, F., Caracciolo, L., Cavalcante, F., Corrado, S., Critelli, S., Muto, F. & Dominici, R. 2016 a. Sedimentary and thermal evolution of the Eocene-Oligocene mudrocks from the southwestern Thrace Basin (NE Greece). Basin Research 28, 319–39.Google Scholar
Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P. & Pappalardo, A. 2008. Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group (north-eastern Calabria): implication for burial history and diagenetic evolution. International Geology Review 50, 1116–31.Google Scholar
Perri, F., Critelli, S., Dominici, R., Muto, F., Tripodi, V. & Ceramicola, S. 2012. Provenance and accommodation pathways of late Quaternary sediments in the deep-water northern Ionian Basin, southern Italy. Sedimentary Geology 280, 244–59.Google Scholar
Perri, F., Critelli, S., Martìn-Algarra, A., Martìn-Martìn, M., Perrone, V., Mongelli, G. & Zattin, M. 2013. Triassic redbeds in the Malaguide Complex (Betic Cordillera – Spain): petrography, geochemistry, and geodynamic implications. Earth-Science Reviews 117, 128.Google Scholar
Perri, F., Critelli, S., Mongelli, G. & Cullers, R. L. 2011. Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic M.te di Gioiosa mudstones (Sicily, southern Italy). International Journal of Earth Sciences 100, 1569–87.Google Scholar
Perri, F., Dominici, R. & Critelli, S. 2015. Stratigraphy, composition and provenance of argillaceous marls from the Calcare di Base Formation, Rossano Basin (northeastern Calabria). Geological Magazine 152, 193209.Google Scholar
Perri, F., Dominici, R., Le Pera, E., Chiocci, F. L. & Martorelli, E. 2016 b. Holocene sediments of the Messina Strait (southern Italy): relationships between source area and depositional basin. Marine and Petroleum Geology 77, 553–66.Google Scholar
Perri, F. & Ohta, T. 2014. Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from Western-Central Mediterranean Alpine Chains. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 144–57.Google Scholar
Perrone, V., Martin-Algarra, A., Critelli, S., Decandia, F. A., D'errico, M., Estevez, A., Iannace, A., Lazzarotto, A., Martin-Martin, M., Martin-Rojas, I., Mazzoli, S., Messina, A., Mongelli, G., Vitale, S. & Zaghloul, M. N. 2006. ‘Verrucano’ and ‘Pseudoverrucano’ in the central-western Mediterranean Alpine chains: palaegeographic evolution and geodynamic significance. In Geology and Active Tectonics of the Western Mediterranean Region and North Africa (eds Chalouan, A. & Moratti, G.), pp. 146. Geological Society of London, Special Publication no. 262.Google Scholar
Potter, P. E., Maynard, J. B. & Depetris, P. J. 2005. Chapter 7. Provenance of mudstones. In Mud and Mudstones: Introduction and Overview. Berlin/Heidelberg/New York: Springer, 157174.CrossRefGoogle Scholar
Rieu, R., Allen, P. A., Plötze, M. & Pettke, T. 2007. Climatic cycles during a Neoproterozoic ‘snowball’ glacial epoch. Geology 35, 299302.Google Scholar
Roep, T. B. 1972. Stratigraphy of the ‘Permo-Triassic’ Saladilla formation and its tectonic setting in the Betic of Malaga (Vélez Rubio region, SE Spain). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 75, 223–47.Google Scholar
Santantonio, M., Fabbi, S. & Aldega, L. 2016. Mesozoic architecture of a tract of the European-Iberian continental margin: insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy). Sedimentary Geology 331, 94113.Google Scholar
Santantonio, M. & Teale, C. T. 1987. An example of the use of detrital episodes in elucidating complex basin histories: the Caloveto and Longobucco Groups of N.E. Calabria, S. Italy. In Marine Clastic Sedimentology (eds Leggett, J. K. & Zuffa, G. G.), pp. 6274. London: Graham & Trotman.Google Scholar
Shao, J., Yang, S. & Li, C. 2012. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments. Sedimentary Geology 265–266, 110–20.Google Scholar
Sinisi, R., Mongelli, G., Memeli, P. & Oggiano, G. 2014. Did the Variscan relief influence the Permian climate of Mesoeurope? Insights from geochemical and mineralogical proxies from Sardinia (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 396, 132–54.Google Scholar
Suter, G. 1980. Carte géologique de la Chaîne rifaine au 1/500.000. Notes et Mémoires du Service Géologique, Rabat, Protectorat de la République Français au Maroc 245, 160.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific, 312 pp.Google Scholar
Vera, J. A. 2004. Geologia de España. Madrid: SGE-IGME, 884 pp.Google Scholar
Wan, S., Toucanne, S., Clift, P. D., Zhao, D., Bayon, G., Yu, Z., Cai, G., Yin, X., Révillon, S., Wang, D., Li, A. & Li, T. 2015. Human impact overwhelms long-term climate control of weathering and erosion in southwest China. Geology 43 (5), 439–42.Google Scholar
Young, J. R., Teale, C. T. & Bown, P. R. 1986, Revision of the stratigraphy of the Longobucco Group (Liassic, Southern Italy) based on new data from nannofossils and ammonites. Eclogae Geologicae Helvetica 79, 117–35.Google Scholar
Zaghloul, M. N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello, M. & Ventimiglia, C. 2010. Depositional systems, composition and geochemistry of Triassic rifted-continental margin redbeds of Internal Rif Chain, Morocco. Sedimentology 57, 312–50.Google Scholar
Zuffa, G. G., Gaudio, W. & Rovito, S. 1980. Detritial mode evolution of the rifted continental-margin Longobucco Sequence (Jurassic), Calabrian Arc, Italy. Journal of Sedimentary Petrology, 50, 5162.Google Scholar