Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T05:32:39.180Z Has data issue: false hasContentIssue false

Primary igneous load-cast deformation structures in the Fongen-Hyllingen layered basic intrusion, Trondheim Region, Norway

Published online by Cambridge University Press:  01 May 2009

P. Thy
Affiliation:
Nordic Volcanological Institute, University of Iceland, 101 Reykjavik, Iceland
J. R. Wilson
Affiliation:
Laboratoriet for endogen geologi, Geologisk institut, Universitetsparken, 8000 Aarhus C, Denmark

Summary

Load-cast structures in the Caledonian, synorogenic, Fongen-Hyllingen layered basic complex closely resemble those deformations resulting from reverse density stratification in experimentally studied, water-saturated sediments. The mushroom-shaped structures are apparently restricted to a single horizon within an interlayered, metamorphosed, dunite–troctolite sequence. They generally have a symmetrical form, revealing a polygonal pattern in the plane of the layering. The density contrast between an olivine-rich crystal mush overlying a plagioclase-rich crystal mush, both very close to the igneous sediment–magma interface, is believed to have caused the deformation. Subsequent consolidation occurred by adcumulus growth.

Type
Articles
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1970. Physical Processes of Sedimentation. London: Allen and Unwin.Google Scholar
Allen, J. R. L. 1977. The possible mechanics of convolute lamination in graded sand beds. J. geol. Soc. Lond. 134, 1931.Google Scholar
Anketell, J. M., Cegla, J. & Dzulynski, S. 1970. On the deformational structures in systems with reversed density gradients, Rocz. Pol. Tow. Geol. 40, 330.Google Scholar
Dawson, J. B. & Hawthorne, J. B. 1973. Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. J. geol. Soc. Lond. 129, 6185.CrossRefGoogle Scholar
Dzulynski, S. 1966. Sedimentary structures resulting from convection-like pattern of motion. Rocz. Pol. Tow. Geol. 36, 321.Google Scholar
Esbensen, K. H., Thy, P. & Wilson, J. R. 1978. A note on the cumulate stratigraphy of the Fongen–Hyllingen gabbro complex, Trondheim region, Norway. Norsk geol. tidsskr. 58, 103–7.Google Scholar
Ferguson, J. & Pulvertaft, T. C. R. 1963. Contrasted styles of igneous layering in the Gardar province of South Greenland. Spec. Pap. Mineral. Soc. Am. 1, 1021.Google Scholar
Gee, D. G. 1975. A geotraverse through the Scandinavian Caledonides-Östersund to Trondheim. Sver. Geol. Unders. Ser. C, Nr. 717.Google Scholar
Goode, A. D. T. 1976. Sedimentary structures and magma current velocities in the Kalka layered intrusion, central Australia. J. Petrology 17, 546–58.CrossRefGoogle Scholar
Hess, H. H. 1960. Stillwater Igneous Complex, Montana: A quantitative mineralogical study. Mem. geol. Soc. Am. 80.Google Scholar
Kisch, H. J. 1962. Petrographical and geological investigations in the southwestern Tydal region, Sör-Tröndelag, Norway. Academisch Proefschrift, Univ. Amsterdam.Google Scholar
Mukherjee, S. & Haldar, D. 1975. Sedimentary structures displayed by the ultramafic rocks of Nausahi, Keonjhar District, Orissa, India. Mineral. Deposita 10, 109–19.CrossRefGoogle Scholar
Needham, R. S. 1978. Giant-scale hydroplastic deformation structures formed by loading of basalt onto water-saturated sand, Middle Proterozoic, Northern Territory, Australia. Sedimentology 25, 285–95.CrossRefGoogle Scholar
Nilsen, O. 1973. Petrology of the Hyllingen gabbro complex, Søor-Trøndelag, Norway. Norsk geol. tidsskr. 53, 213–31.Google Scholar
Olesen, N. Ø., Hansen, E. S., Kristensen, L. H. & Thyrsted, T. 1973. A preliminary account on the geology of the Selbu-Tydal area, the Trondheim region, Central Norwegian Caledonides. Leidse Geol. Meded. 49, 259–76.Google Scholar
Parsons, I. 1972. A preliminary description of the Klokken intrusion, South Greenland. Rapp. Grønlands geol. Unders. 45, 2932.Google Scholar
Pettijohn, E. J. 1975. Sedimentary rocks, 3rd ed. New York: Harper and Row.Google Scholar
Philpotts, A. R. 1972. Density, surface tension and viscosity of the immiscible phase in a basic, alkaline magma. Lithos 5, 118.CrossRefGoogle Scholar
Ramberg, H. 1963. Experimental study of gravity tectonics by means of centrifuged models. Bull. geol. Inst. Univ. Uppsala 42, 197.Google Scholar
Ramberg, H. 1967. The Scandinavian Caledonides as studied by centrifuged dynamic models. Bull. geol. Inst. Univ. Uppsala 43, 172.Google Scholar
Wadsworth, W. J. 1973. Magmatic sediments. Minerals Sci. Engng 5, 2535.Google Scholar
Wager, L. R. 1963. The mechanism of adcumulus growth in the layered series of the Skaergaard intrusion. Spec. Pap. Mineral. Soc. Am. 1, 19.Google Scholar
Wager, L. R. & Brown, G. M. 1968. Layered Igneous Rocks. Edinburgh: Oliver & Boyd.Google Scholar
Wager, L. R., Brown, G. M. & Wadsworth, W. J. 1960. Types of igneous cumulates. J. Petrology 1, 7385.CrossRefGoogle Scholar
Wiebe, R. A. 1974. Coexisting intermediate and basic magmas, Ingonish, Cape Breton Island. J. Geol. 82, 7487.CrossRefGoogle Scholar
Wilson, J. R. & Olesen, N. Ø. 1975. The form of the Fongen-Hyllingen gabbro complex, Trondheim Region, Norway. Norsk geol. tidsskr. 55, 423–39.Google Scholar