Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T20:10:56.111Z Has data issue: false hasContentIssue false

Post-Palaeozoic cooling and uplift of the Brabant Massif as revealed by apatite fission track analysis

Published online by Cambridge University Press:  01 May 2009

C. Vercoutere
Affiliation:
Geological Institute, University of Ghent, Belgium
P. Van Den Haute
Affiliation:
Geological Institute, University of Ghent, Belgium

Abstract

A fission track study has been carried out on apatite from the igneous rock belt running along the southern border of the Brabant Massif. The study includes age determinations and a length analysis of both surface tracks and confined tracks. Apatite fission track ages vary between 146 Ma and 209 Ma. Confined track length distributions and the projected length age spectra indicate that the rocks cooled relatively rapidly from above 100 °C to ambient temperatures. The fission track ages therefore date a cooling phase of the Brabant Massif which is interpreted as reflecting an important uplift during the major part of the Jurassic, related to the Cimmerian tectonism which affected the North Sea basin and adjacent areas. Two apatite samples from the southerly Dinant Basin yield fission track ages around 200 Ma, similar to the oldest ages observed in the Brabant Massif, and with comparable track length characteristics. This indicates that the uplift was not limited to the Brabant region but also affected the Hercynian basement to the south.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, L. & Deutsch, S. 1984. Les porphyres de Quenast et de Lessines: géochronologie, géochimie isotopique et contribution au problème de l'âge du socle précambrien du Massif du Brabant (Belgique). Bulletin de la Société belge de Géologie 93, 375–84.Google Scholar
André, L., Deutsch, S. & Michot, J. 1981. Données géochronologiques concernant le développement tectono-metamorphique du segment Calédonien BrabanUçon. Annales de la Société Géologique de Belgique 104, 241–53.Google Scholar
Andriessen, P. A. M. 1990. Anomalous fission track apatite ages of the Precambrian basement in the Hunnedalen region, south-western Norway. Nuclear Tracks and Radiation Measurements 17, 285–91.CrossRefGoogle Scholar
Bless, M. J. M., Bouckaert, J. & Paproth, E. 1980. Environmental aspects of some Pre-Permian deposits in NW Europe. Mededelingen van de Rijks Geologische Dienst 32, 313.Google Scholar
Bless, M. J. M., Conil, R., Defourny, P., Groessens, E., Hance, L. & Hennebert, M. 1980. Stratigraphy and thickness variations of some Strunio-Dinantian deposits around the Brabant Massif. Mededelingen van de Rijks Geologische Dienst 32, 5665.Google Scholar
Bouckaert, J. & Dusar, M. 1987. Arguments géophysiques pour une tectonique cassante en Campine (Belgique), active au Paléozoïque et réactivée depuis le Jurassique supérieur. Annales de la Société Géologique du Nord 106, 201–8.Google Scholar
Duddy, I. R., Green, P. F. & Laslett, G. M. 1988. Thermal annealing of fission tracks in apatite, 3. Variable Temperature Behaviour. Chemical Geology (Isotope Geoscience Section) 73, 2538.CrossRefGoogle Scholar
Durrani, I. R. & Bull, R. K. 1987. Solid State Nuclear Track Detection (Principles, Methods and Applications). Oxford: Pergamon Press, 304 pp.Google Scholar
Faure, G. 1986. Principles of Isotope Geology, second edition. John Wiley & Sons, Inc., 589 pp.Google Scholar
Fleischer, R. L., Price, P. B. & Walker, R. M. 1975. Nuclear Tracks in Solids; Principles and Applications. Berkeley: University of California Press, 605 pp.CrossRefGoogle Scholar
Geyh, M. A. & Schleicher, H. 1990. Absolute Age Determination. Berlin, Heidelberg: Springer Verlag, 503 pp.CrossRefGoogle Scholar
Gleadow, A. J. W., Duddy, I. R., Green, P. F. & Lovering, J. F. 1986. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology 94, 405–15.CrossRefGoogle Scholar
Gleadow, A. J. W., Duddy, I. R. & Lovering, J. F. 1983. Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Australian Petroleum Exploration Association Journal 23, 93102.Google Scholar
Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W. & Lovering, J. F. 1989. Thermal annealing of fission tracks in apatite, 4. Quantative modelling techniques and extension to geological timescales. Chemical Geology (Isotope Geoscience Section) 79, 155–82.CrossRefGoogle Scholar
Laslett, G. M., Green, P. F., Duddy, I. R. & Gleadow, A. J. W. 1987. Thermal annealing of fission tracks in apatite, 2. A quantitative analysis. Chemical Geology (Isotope Geoscience Section) 65, 113.CrossRefGoogle Scholar
Legrand, R. 1968. Le Massif du Brabant. Mémoires pour servir à l'explication des Cartes géologiques et minières de la Belgique no. 9, 148 pp.Google Scholar
Patijn, R. J. H. 1963. Het Carboon in de ondergrond van Nederland en de oorsprong van het Massief van Brabant. Geologie en Mijnbouw 42, 341–9.Google Scholar
Robaszynski, F. & Dupuis, C. 1983. Guides Géologiques Régionaux, Belgique. Masson, 204 pp.Google Scholar
Rohrman, M., Van Der Beek, P. A. & Andriessen, P. A. M. 1992. The Mesozoic to Cenozoic thermal history of south Norway as revealed by Apatite Fission Track Analysis (AFTA) and thermal modelling studies. Abstract for the 7th International Workshop on Fission-Track Thermochronology. Philadelphia, 1317 July, 1992.Google Scholar
Van Den Haute, P., Jonckheere, R. & De Corte, F. 1988. Thermal neutron fluence determination for fission-track dating with metal activation monitors: a reinvestigation. Chemical Geology (Isotope Geoscience Section) 73, 233–44.CrossRefGoogle Scholar
Van Den Haute, P. & Vercoutere, C. 1989. Apatite fission-track evidence for a Mesozoic uplift of the Brabant Massif: preliminary results. Annales de la Société Géologique de Belgique 112 (2), 443–52.Google Scholar
Van Leckwuck, W. P. 1956. Tableaux d'une aire instable au paléozoïque supérieur: la terminaison orientale du Massif du Brabant aux confins Belgo-Neerlandais. Verhandelingen van het Koninklijk Nederlands geologisch mijnbouwkundig genootschap, Geologische Serie 16, 252–73.Google Scholar
Wagner, G. A. & Hejl, E. 1991. Apatite fission-track age-spectrum based on projected track-length analysis. Chemical Geology (Isotope Geoscience Section) 87, 19.CrossRefGoogle Scholar
Wagner, G. A., Reimer, G. M. & Jäger, E. 1977. Cooling ages derived by apatite fission-track, mica Rb–Sr and K–Ar dating: the uplift and cooling history of the Central Alps. Memorie degli Istituti di Geologia e Mineralogia del'Università di Padova 30, 127.Google Scholar
Wagner, G. A. & Van Den Haute, P. 1992. Fission-Track Dating. Kluwer Academic Publishers, 285 pp.CrossRefGoogle Scholar
Ziegler, P. 1980. Northwestern Europe: Subsidence patterns of Post-Variscan basins. Annales de la Société Géologique du Nord 99, 249–80.Google Scholar
Ziegler, P. A. 1988. Evolution of the Arctic–North Atlantic and Western Tethys. American Association of Petroleum Geologists, Memoir no. 43, 198 pp.CrossRefGoogle Scholar