Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T22:50:27.310Z Has data issue: false hasContentIssue false

Pliocene and Late Pleistocene actinopterygian fishes from Santa Maria Island, Azores (NE Atlantic Ocean): palaeoecological and palaeobiogeographical implications

Published online by Cambridge University Press:  21 February 2020

Sérgio P. Ávila*
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, 9501-801Ponta Delgada, Açores, Portugal MPB-Marine PalaeoBiogeography working group of the University of the Azores, Rua da Mãe de Deus, 9501-801Ponta Delgada, Açores, Portugal
José M.N. Azevedo
Affiliation:
Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, 9501-801Ponta Delgada, Açores, Portugal Grupo de Biodiversidade dos Açores and cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Portugal
Patrícia Madeira
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, 9501-801Ponta Delgada, Açores, Portugal MPB-Marine PalaeoBiogeography working group of the University of the Azores, Rua da Mãe de Deus, 9501-801Ponta Delgada, Açores, Portugal
Ricardo Cordeiro
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, 9501-801Ponta Delgada, Açores, Portugal MPB-Marine PalaeoBiogeography working group of the University of the Azores, Rua da Mãe de Deus, 9501-801Ponta Delgada, Açores, Portugal
Carlos S. Melo
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal MPB-Marine PalaeoBiogeography working group of the University of the Azores, Rua da Mãe de Deus, 9501-801Ponta Delgada, Açores, Portugal Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016Lisboa, Portugal Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1746-016Lisboa, Portugal
Lara Baptista
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, 9501-801Ponta Delgada, Açores, Portugal MPB-Marine PalaeoBiogeography working group of the University of the Azores, Rua da Mãe de Deus, 9501-801Ponta Delgada, Açores, Portugal
Paulo Torres
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Azores, Portugal Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, 9501-801Ponta Delgada, Açores, Portugal MPB-Marine PalaeoBiogeography working group of the University of the Azores, Rua da Mãe de Deus, 9501-801Ponta Delgada, Açores, Portugal
Markes E. Johnson
Affiliation:
Department of Geosciences, Williams College, Williamstown, Massachusetts01267, USA
Romain Vullo
Affiliation:
University of Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000Rennes, France
*
Author for correspondence: Sérgio P. Ávila, Email: [email protected]

Abstract

Fossil fishes are among the rarest in volcanic oceanic islands, their presence providing invaluable data for the understanding of more general (palaeo)biogeographical patterns and processes. Santa Maria Island (Azores Archipelago) is renowned for its palaeontological heritage, with representatives of several phyla, including the Chordata. We report on the fossil fishes, resulting in an increase in the number of Pliocene fishes from the Azores to 11 taxa: seven Chondrichthyes and at least four Actinopterygii. The genus Sparisoma is reported for the first time in the fossil record. The presence of fossil remains of the parrotfish Sparisoma cretense in Last Interglacial outcrops is significant, because it posits a setback for the theory that most of the present-day Azorean marine species colonized the area after the last glacial episode. Our multidisciplinary approach combines palaeontological data with ecological and published genetic data, offering an alternative interpretation. We suggest that most of the Azorean shallow-water subtropical and temperate marine species living in the archipelago during the Last Interglacial were not affected by the decrease in sea surface temperatures during the last glacial episode. We also predict low genetic diversity for fish species presently living in the Azores and ecologically associated with fine sediments, as a result of the remobilization and sediment transport to abyssal depths, during the Last Glacial episode; these are viewed as post-glacial colonizers or as ‘bottleneck’ survivors from the Last Glaciation.

Type
Original Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abecasis, D, Bentes, L, Ribeiro, J, Machado, D, Oliveira, F, Veiga, P, Gonçalves, JMS and Erzini, K (2008) First record of the Mediterranean parrotfish, Sparisoma cretense in Ria Formosa (south Portugal). Marine Biodiversity Records 1, e27. https://doi.org/10.1017/S175526720600248X.CrossRefGoogle Scholar
Afonso, P, Morato, T and Santos, RS (2008) Spatial patterns in reproductive traits of the temperate parrotfish Sparisoma cretense. Fisheries Research 90, 92–9. https://doi.org/10.1016/j.fishres.2007.09.029.CrossRefGoogle Scholar
Agassiz, L (1831) Recherche sur les Poisons Fossils. Imprimerie de Petitpierre, Neuchatel. Tome 1, 188 pp.Google Scholar
Agassiz, L (1833–1843) Recherches sur les Poissons Fossiles (Contenant l’Histoire des Cycloides). Imprimerie de Petitpierre, Neuchâtel, 1420 pp.Google Scholar
Antunes, MT, Jonet, S and Nascimento, A (1981) Vertébrés (crocodiliens, poissons) du Miocène marin de l’Algarve occidentale. Ciências da Terra 6, 938.Google Scholar
Arambourg, C (1927) Les poissons fossiles d’Oran. Matériaux pour la carte géologique de l´Algérie, Paléontologie, Alger 6, 1293.Google Scholar
Ávila, SP (2000) Shallow-water marine molluscs of the Azores: biogeographical relationships. Arquipélago Life and Marine Sciences Supplement 2 (Part A), 99131.Google Scholar
Ávila, SP (2013) Unravelling the patterns and processes of evolution of marine life in oceanic islands: a global framework. In Climate Change Perspectives from the Atlantic: Past, Present and Future (eds Fernández-Palacios, JM, de Nascimento, L, Hernández, JC, Clemente, S, González, A and Díaz-González, JP), pp. 95125. Tenerife: Universidad de La Laguna.Google Scholar
Ávila, SP, Amen, R, Azevedo, JMN, Cachão, M and García-Talavera, F (2002) Checklist of the Pleistocene marine molluscs of Prainha and Lagoinhas (Santa Maria Island, Azores). Açoreana 9, 343370.Google Scholar
Ávila, SP, Cordeiro, R, Rodrigues, AR, Rebelo, AC, Melo, C, Madeira, P and Pyenson, ND (2015a) Fossil Mysticeti from the Pleistocene of Santa Maria Island, Azores (NE Atlantic Ocean), and the prevalence of fossil cetaceans on oceanic islands. Palaeontologia Electronica 18.2.27A, 112. https://doi.org/10.26879/548.CrossRefGoogle Scholar
Ávila, SP, da Silva, CM, Cachão, M, Landau, B, Quartau, R and Martins, AMF (2008a) Local disappearance of bivalves in the Azores during the last glaciation. Journal of Quaternary Science 23, 777–85. https://doi.org/10.1002/jqs.1165.CrossRefGoogle Scholar
Ávila, SP, da Silva, CM, Schiebel, R, Cecca, F, Backeljau, T and Martins, AMF (2009a) How did they get here? Palaeobiogeography of the Pleistocene marine molluscs of the Azores. Bulletin of the Geological Society of France 180, 295307. https://doi.org/10.2113/gssgfbull.180.4.295.CrossRefGoogle Scholar
Ávila, SP, Madeira, P, Mendes, N, Rebelo, AC, Medeiros, A, Gomes, C, García-Talavera, F, da Silva, CM, Cachão, M, Hillaire-Marcel, C and Martins, AMF (2008b) Mass extinctions in the Azores during the last glaciation: fact or myth? Journal of Biogeography 35, 1123–9. https://doi.org/10.1111/j.1365-2699.2008.01881.x.CrossRefGoogle Scholar
Ávila, SP, Madeira, P, Zazo, C, Kroh, A, Kirby, M, da Silva, CM, Cachão, M and Martins, AMF (2009b) Palaeoecology of the Pleistocene (MIS 5.5) outcrops of Santa Maria Island (Azores) in a complex oceanic tectonic setting. Palaeogeography, Palaeoclimatology, Palaeoecology 274, 1831. https://doi.org/10.1016/j.palaeo.2008.12.014.CrossRefGoogle Scholar
Ávila, SP, Melo, C, Berning, B, Cordeiro, R, Landau, B and da Silva, CM (2016) Persististrombus coronatus (Mollusca: Strombidae) in the early Pliocene of Santa Maria Island (Azores: NE Atlantic): palaeoecology, palaeoclimatology and palaeobiogeographic implications on the NE Atlantic Molluscan Biogeographical Provinces. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 912–23. https://doi.org/10.1016/j.palaeo.2015.10.043.CrossRefGoogle Scholar
Ávila, SP, Melo, PJ, Lima, A, Amaral, A, Martins, AMF and Rodrigues, A (2008c) The reproductive cycle of the rissoid Alvania mediolittoralis Gofas, 1989 (Mollusca, Gastropoda) at São Miguel Island (Azores, Portugal). Journal of Invertebrate Reproduction and Development 52, 3140. https://doi.org/10.1080/07924259.2008.9652269.CrossRefGoogle Scholar
Ávila, SP, Melo, C, , N, Quartau, R, Rijsdijk, K, Ramalho, RS, Berning, B, Cordeiro, R, de Sá, NC, Pimentel, A, Baptista, L, Medeiros, A, Gil, A and Johnson, ME (2019) Towards a “Sea-Level Sensitive Marine Island Biogeography” model: the impact of glacio-eustatic oscillations in global marine island biogeographic patterns. Biological Reviews 94, 1116–42. https://doi.org/10.1111/brv.12492.CrossRefGoogle Scholar
Ávila, SP, Melo, C, Silva, L, Ramalho, RS, Quartau, R, Hipólito, A, Cordeiro, R, Rebelo, AC, Madeira, P, Rovere, A, Hearty, PJ, Henriques, D, da Silva, CM, Martins, AMF and Zazo, C (2015b) A review of the MIS 5e highstand deposits from Santa Maria Island (Azores, NE Atlantic): palaeobiodiversity, palaeoecology and palaeobiogeography. Quaternary Science Reviews 114, 126–48. https://doi.org/10.1016/j.quascirev.2015.02.012.CrossRefGoogle Scholar
Ávila, SP, Ramalho, RS, Habermann, JM, Quartau, R, Kroh, A, Berning, B, Johnson, ME, Kirby, MX, Zanon, V, Titschack, J, Goss, A, Rebelo, AC, Melo, C, Madeira, P, Cordeiro, R, Meireles, R, Bagaço, L, Hipólito, A, Uchman, A, da Silva, CM, Cachão, M and Madeira, J (2015c) Palaeoecology, taphonomy, and preservation of a lower Pliocene shell bed (coquina) from a volcanic oceanic island (Santa Maria Island, Azores, NE Atlantic Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology 430, 5773. https://doi.org/10.1016/j.palaeo.2015.04.015.CrossRefGoogle Scholar
Ávila, SP, Ramalho, RS, Habermann, JM and Titschack, J (2018) The marine fossil record at Santa Maria Island (Azores). In Volcanoes of the Azores. Revealing the Geological Secrets of the Central Northern Atlantic Islands (eds Kueppers, U and Beier, C), pp. 155–96. Berlin: Springer.CrossRefGoogle Scholar
Ávila, SP, Ramalho, RS and Vullo, R (2012) Systematics, palaeoecology and palaeobiogeography of the Neogene fossil sharks from the Azores (Northeast Atlantic). Annales de Paléontologie 98, 167–89. https://doi.org/10.1016/j.annpal.2012.04.001.CrossRefGoogle Scholar
Ávila, SP, Rebelo, AC, Medeiros, A, Melo, C, Gomes, C, Bagaço, L, Madeira, P, Borges, PA, Monteiro, P, Cordeiro, R, Meireles, R and Ramalho, RS (2010) Os Fósseis de Santa Maria (Açores). 1. A Jazida da Prainha. Lagoa: OVGA – Observatório Vulcanológico e Geotérmico dos Açores, 103 p.Google Scholar
Baarli, BG, Malay, MCD, Santos, A, Johnson, ME, da Silva, CM, Meco, J, Cachão, M and Mayoral, EJ (2017) Miocene to Pleistocene transatlantic dispersal of Ceratoconcha coral-dwelling barnacles and North Atlantic island biogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 468, 520–28. https://doi.org/10.1016/j.palaeo.2016.12.046.CrossRefGoogle Scholar
Baarli, BG, Santos, A, Mayoral, EJ, Ledesma-Vázques, J, Johnson, ME, da Silva, CM and Cachão, M (2013) What Darwin did not see: Pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geological Magazine 150, 183–9. https://doi.org/10.1017/S001675681200074X.CrossRefGoogle Scholar
Bauzá, J (1948) Nuevas aportaciones al conocimiento de la ictiología del Neógeno catalano-balear. Estudios Geológicos 8, 221239.Google Scholar
Bauzá, J and Plans, J (1973) Contribución al conocimiento de la fauna ictiológica del Neógeno Catalano Balear. Boletín de la Sociedad de Historia Natural de las Baleares 28, 72131.Google Scholar
Bellardi, L (1873) I molluschi dei terreni terziarii del Piemonte e della Liguria. Parte I. Cephalopoda, Pteropoda, Heteropoda. Gasteropoda (Muricidae et Tritonidae). Stamperia Reale, Torino, 264 pp., 15 pl.Google Scholar
Bellwood, DR and Schultz, O (1991) A Review of the fossil record of the parrotfishes (Labroidei: Scaridae) with a description of a new Calotomus species from the middle Miocene (Badenian) of Austria. Annalen des Naturhistorischen Museums in Wien 92, 5571.Google Scholar
Bellwood, DR, Schultz, O, Siqueira, AC and Cowman, PF (2019) A review of the fossil record of the Labridae. Annalen des Naturhistorischen Museums in Wien, Serie A 121, 125–93.Google Scholar
Bernardi, G, Robertson, DR, Clifton, KE and Azzurro, E (2000) Molecular systematics, zoogeography, and evolutionary ecology of the Atlantic parrotfish genus Sparisoma. Molecular Phylogenetics and Evolution 15, 292300. https://doi.org/10.1006/mpev.1999.0745.CrossRefGoogle ScholarPubMed
Betancort, JF, Lomoschitz, A and Meco, J (2014) Mio-Pliocene crustaceans from the Carany Islands, Spain. Rivista Italiana di Paleontologia e Stratigrafia 120, 337–49. https://doi.org/10.13130/2039-4942/6076.Google Scholar
Betancort, JF, Lomoschitz, A and Meco, J (2016) Early Pliocene fishes (Chondrichthyes, Osteichthyes) from Gran Canaria and Fuerteventura (Canary Islands, Spain). Estudios Geológicos 72, e054.CrossRefGoogle Scholar
Beu, AG (2017) Evolution of Janthina and Recluzia (Mollusca: Gastropoda: Epitoniidae). Records of the Australian Museum 69, 119222.CrossRefGoogle Scholar
Blanc, P-L (2002) The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodinamica Acta 15, 303–17. https://doi.org/10.1080/09853111.2002.10510763.CrossRefGoogle Scholar
Bleeker, P (1859) Enumeratio specierum piscium hucusque in Archipelago indico observatarum. Acta Societatis Scientiarum Indo-Neerlandae 6, 1276.Google Scholar
Briggs, JC (1974) Marine Zoogeography. New York: McGraw-Hill, 475 p.Google Scholar
Briggs, JC (1995) Global Biogeography. Amsterdam: Elsevier, 452 p.Google Scholar
Brocchi, GB (1814) Conchiologia fossile subapennina con osservazioni geologiche sugli Apennini e sul suolo adiacente. Dalla Stamperia Reale, Milano. Vol. 1: i–lxxx, 1–56, 1–240; vol. 2: 241712, 16 pls.CrossRefGoogle Scholar
Brönn, HG (1861) Die Klassen und Ordnungen der Weichtiere (Malacozoa). CF Winter’sche Verlagshandlung, Leipzig und Heidelberg, 1861, 3(2): 103223.Google Scholar
Brönn, HG (1862) Die Klassen und Ordnungen der Weichthiere (Malacozoa). Kopflose Weichthiere (Malacozoa Acephala). CF Winter’sche Verlagshandlung, Leipzig pp. 1306 + 118 pl.Google Scholar
Buckeridge, JS and Winkelmann, K (2010) Zullobalanus santamariaensis sp. nov., a new late Miocene barnacle species of the family Archeobalanidae (Cirripedia: Thoracica), from the Azores. Zootaxa 2680, 3344.Google Scholar
Bullock, AE and Monod, T (1997) Myologie céphalique de deux poissons perroquets (Teleostei: Scaridae). Cybium 21, 173199.Google Scholar
Charlesworth, E (1837) A notice of the remains of vertebrate animals occurring in the Tertiary beds of Norfolk and Suffolk. The Magazine of Natural History 2, 4043.Google Scholar
Clements, KD, German, DP, Piché, J, Tribollet, A and Choat, JH (2016) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biological Journal of the Linnean Society 120, 729751. https://doi.org/10.1111/bij.12914.Google Scholar
Cocchi, I (1864) Monografia dei Pharyngodopilidae. Nuova famiglia di Pesci Labroidi. Annali del Museo Imperiale di Fisica e Storia Naturale di Firenze 1, 62152.Google Scholar
Collins, RL (1934) A monograph of the American Tertiary pteropod mollusks. Johns Hopkins University Studies in Geology 11, 137234.Google Scholar
Cordeiro, R, Borges, JP, Martins, AMF and Ávila, SP (2015) Checklist of the littoral gastropods (Mollusca: Gastropoda) from the Archipelago of the Azores (NE Atlantic). Biodiversity Journal 6, 855900.Google Scholar
Crowley, TJ (1981) Temperature and circulation changes in the eastern North Atlantic during the last 150,000 years: Evidence from the planktonic foraminiferal record. Marine Micropaleontology 6, 97129.CrossRefGoogle Scholar
Cutwa, MM and Turingan, RG (2000) Intralocality variation in feeding biomechanics and prey use in Archosargus probatocephalus (Teleostei, Sparidae), with implications for the ecomorphology of fishes. Environmental Biology of Fishes 59, 191–98. https://doi.org/10.1023/A:1007679428331.CrossRefGoogle Scholar
Cuvier GLCED (1816) Le Règne Animal Distribué D’après son Organisation Pour Servir de Base à L’histoire Naturelle des Animaux et D’introduction à L’anatomie Comparée. T. II, Les reptiles, les Poissons, les Mollusques et les Annélides. Deterville, Paris, 532 pp.Google Scholar
Darwin, C (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray, 502 p.Google Scholar
Day, JJ (2002) Phylogenetic relationships of the Sparidae (Teleostei: Percoidei) and implications for convergent trophic evolution. Biological Journal of the Linnean Society 76, 269301. https://doi.org/10.1111/j.1095-8312.2002.tb02088.x.CrossRefGoogle Scholar
de Lumley, H (1988) La stratigraphie du remplissage de la Grotte du Vallonnet. L’Anthropologie 92, 407–28.Google Scholar
Defrance, JLM (1827) Dictionnaire des Sciences Naturelles. FG Levrault, Strasbourg.Google Scholar
Delaroche, F-É (1809) Suite du mémoire sur les espèces de poissons observées à Iviça. Tableau des espèces de poissons que j'ai observées à Iviça pendant les mois de décembre, janvier et février. Tableau des poissons que j'ai observés à Maïorque et à Barcelonne, mais que je n'ai point vus à Iviça. Observations sur quelques-uns des poissons indiqués dans le précédent tableau, et descriptions des espèces nouvelles ou peu connues. Annales du Muséum d'Histoire Naturelle, Paris 13, 313–61, plates 20–25.Google Scholar
Dolomatova, S, Zukowb, W and Brudnickib, R (2013) Role of temperature in regulation of the life cycle of temperate fish. Russian Journal of Marine Biology 39, 8191. https://doi.org/10.1134/S1063074013020041.CrossRefGoogle Scholar
Domingues, VS, Alexandrou, M, Almada, VC, Robertson, DR, Brito, A, Santos, RS and Bernardi, G (2008) Tropical fishes in a temperate sea: evolution of the wrasse Thalassoma pavo and the parrotfish Sparisoma cretense in the Mediterranean and the adjacent Macaronesian and Cape Verde Archipelagos. Marine Biology 154, 465–74. https://doi.org/10.1007/s00227-008-0941-z.CrossRefGoogle Scholar
Domingues, VS, Santos, RS, Brito, A and Almada, VC (2006) Historical population dynamics and demography of the eastern Atlantic pomacentrid Chromis limbata (Valenciennes, 1833). Molecular Phylogenetics and Evolution 40, 139–47. https://doi.org/10.1016/j.ympev.2006.02.009.CrossRefGoogle Scholar
Estevens, M and Ávila, SP (2007) Fossil whales from the Azores. Açoreana Suplemento 5, 140–61.Google Scholar
Fernández-Palacios, JM, Rijsdijk, KF, Norder, SJ, Otto, R, de Nascimento, L, Fernández-Lugo, S, Tjørve, E and Whittaker, RJ (2016) Towards a glacial-sensitive model of island biogeography. Global Ecology and Biogeography 25, 817–30. https://doi.org/10.1111/geb.12320.CrossRefGoogle Scholar
Ferreira, O da V (1955) A fauna miocénica da ilha de Santa Maria (Açores). Comunicações dos Serviços Geológicos de Portugal 36, 944.Google Scholar
Gagnaison, C (2017) Le site paléontologique du Grand Morier (Pont-Boutard, Indre-et-Loire, France): contexte géologique et détail biostratigraphique des formations cénozoïques à partir des assemblages de vertébrés fossiles. Geodiversitas 39, 251–71. https://doi.org/10.5252/g2017n2a5.CrossRefGoogle Scholar
Garcia-Castellanos, D, Estrada, F, Jiménez-Munt, I, Gorini, C, Fernàndez, M, Vergés, J and de Vicente, R (2009) Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778–81. https://doi.org/10.1038/nature08555.CrossRefGoogle ScholarPubMed
Gervais, FLP (1857) Sur un poisson labroide fossile dans les sables marins de Montpellier (Labrodon pavimentatum). Mémoires de la Académie des Sciences de Montpellier 3, 515 pp.Google Scholar
Guidetti, P and Boero, F (2002) Spatio-temporal variability in abundance of the parrotfish, Sparisoma cretense, in SE Apulia (SE Italy, Mediterranean Sea). Italian Journal of Zoology 69, 229–32. https://doi.org/10.1080/11250000209356464.CrossRefGoogle Scholar
Günther, ACLG (1861) A preliminary synopsis of the labroid genera. The Annals and Magazine of Natural History; Zoology, Botany, and Geology 8, 382–89.Google Scholar
Günther, ACLG (1862) Catalogue of the fishes in the British Museum. Printed by order of the trustees, London. Vol. 4, 534 pp.Google Scholar
Harzhauser, M, Piller, WE and Steininger, FF (2002) Circum-Mediterranean Oligo–Miocene biogeographic evolution – the gastropods’ point of view. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 103–33. https://doi.org/10.1016/S0031-0182(01)00464-3.CrossRefGoogle Scholar
Janssen, AW, Kroh, A and Ávila, SP (2008) Early Pliocene heteropods and pteropods (Mollusca, Gastropoda) from Santa Maria (Azores, Portugal): systematics and biostratigraphic implications. Acta Geologica Polonica 58, 355–69.Google Scholar
Johnson, ME, Ramalho, RS, Baarli, BG, Cachão, M, da Silva, CM, Mayoral, EJ and Santos, A (2014) Miocene–Pliocene rocky shores on São Nicolau (Cape Verde Islands): contrasting windward and leeward biofacies on a volcanically active oceanic island. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 131–43. https://doi.org/10.1016/j.palaeo.2013.12.028.CrossRefGoogle Scholar
Johnson, ME, Uchman, A, Costa, PJM, Ramalho, RS and Ávila, SP (2017) Intense hurricane transport sand onshore: example from the Pliocene Malbusca section on Santa Maria Island (Azores, Portugal). Marine Geology 385, 244–49. https://doi.org/10.1016/j.margeo.2017.02.002.CrossRefGoogle Scholar
Jonet, S (1968) Notes d’ichthyologie miocène portugaise. IV – Les Labridae. Boletim da Sociedade Geológica de Portugal 16, 209–21.Google Scholar
Jonet, S (1975) Notes d’ichthyologie Miocene Portugaise. Boletim da Sociedade Geológica de Portugal 29, 135–73.Google Scholar
Jonet, S, Kotchetoff, Y and Kotchetoff, B (1975) L’helvétien du Penedo et sa faune ichthyologique. Comunicações dos Serviços Geológicos de Portugal 59, 193228.Google Scholar
Klein, EF (1885) Beiträge zur Bildung des Schädels der Knochenfische. Jahreshefte Vereins Vaterlandischer Naturkunde in Würtenberg 42, 205300.Google Scholar
Kroh, A, Bitner, MA and Ávila, SP (2008) Novocrania turbinata (Brachiopoda) from the Early Pliocene of the Azores (Portugal). Acta Geologica Polonica 58, 473–78.Google Scholar
Lamarck, J-BM de (1816) Histoire Naturelle des Animaux sans Vertèbres. Tome second. Verdière, Paris, 568 pp.Google Scholar
Landini, W (1977) Osservazioni sulle placche faringee di alcuni labridi del Pliocene della Toscana. Atti de la Societá Toscana di Scienze Naturali, Serie A 83, 230–50.Google Scholar
Laughton, AS and Whitmarsh, RB (1974) The Azores-Gibraltar plate boundary. In Geodynamics of Iceland and the North Atlantic Area (ed. Kristjansson, L), pp. 6381. Austria: Kufstein.CrossRefGoogle Scholar
Laurito, CA, Calvo, C, Valerio, AL, Calvo, A and Chacón, R (2014) Ictiofauna del mioceno inferior de la localidad de Pacuare de Tres Equis, formación río Banano, provincia de Cartago, Costa Rica, y descripción de un nuevo género y una nueva especie de Scaridae. Revista Geológica de América Central 50, 153–92. https://doi.org/10.15517/rgac.v0i50.15121.Google Scholar
Le Hon, H (1871) Préliminaires d’une Mémoire sur les Poissons Tertiaires de Belgique. H Merzbach, Bruxelles, 15 pp.Google Scholar
Lecointre, G (1952) Recherches sur le Néogène et le Quaternaire marin de la Côte Atlantique du Maroc, Tome 2 – Paléontologie. Notes et Mémoires du Service Géologique du Maroc 99, 1172.Google Scholar
Leske, NG (1778) Jacobi Theodori Klein naturalis dispositio echinodermatum et lucubratiunculam de aculeis echinorum marinorum. Ex Officlna Gleditschiana, Leipzig, xx + 214 pp.CrossRefGoogle Scholar
Linnaeus, C (1758) Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Holmiae, Impensis Direct, Laurentii Salvii. Vol 1, 10th ed., 824 pp.CrossRefGoogle Scholar
Lisiecki, LE and Raymo, ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071.Google Scholar
Madeira, P, Kroh, A, Cordeiro, R, Meireles, R and Ávila, SP (2011) The fossil echinoids of Santa Maria Island, Azores (Northern Atlantic Ocean). Acta Geologica Polonica 61, 243–64.Google Scholar
Madeira, P, Kroh, A, Martins, AMF and Ávila, SP (2007) The marine fossils from Santa Maria Island (Azores, Portugal): an historical overview. Açoreana Suplemento 5, 5973.Google Scholar
Martín-González, E, Buckeridge, J, Castillo, C and García-Talavera, F (2012) First record of a tropical shallow water barnacle Tetraclita sp. (Cirripedia: Tetraclitoidea) from the middle Neogene of the Canary Islands. Vieraea 40, 97106.Google Scholar
Mas, G and Antunes, MT (2008) Presència de Tomistoma cf. lusitanica (Vianna i Moraes, 1945) (Reptilia: Crocodylia) al Burdigalià inferior de Mallorca (Illes Balears, Mediterrània occidental). Implicacions paleoambientals. Bolletí de la Societat d’Història Natural de les Balears 51, 131–46.Google Scholar
Mayer, C (1864) Description de coquilles fossiles des terrains tertiaires supérieurs (suite). Journal de Conchyliologie 12(2), 160–68, 168–81, pls 8–9 (20 April); 12(4), 350–61, pl. 14 (17 October).Google Scholar
Meco, J (1977) Los Strombus Neogenos y Cuaternarios del Atlantico Eurafricano. (Taxonomia, Biostratigrafia y Palaeoecologia). Palaeontologia de Canarias 1, 1142.Google Scholar
Meco, J, Koppers, AAP, Miggins, DP, Lomoschitz, A and Betancort, J-F (2015) The Canary record of the evolution of the North Atlantic Pliocene: New 40Ar/39Ar ages and some notable palaeontological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 5369. https://doi.org/10.1016/j.palaeo.2015.05.027.CrossRefGoogle Scholar
Meco, J, Lomoschitz, A and Betancort, J-F (2016) Early Pliocene tracer of North Atlantic and South Pacific sea surface currents: Janthina typica (Bronn, 1860) (Mollusca: Gastropoda). Revista Mexicana de Ciencias Geológicas 33, 192–7.Google Scholar
Meco, J, Petit-Maire, N, Fontugne, M, Shimmield, G and Ramos, AJ (1997) The Quaternary deposits in Lanzarote and Fuerteventura (Eastern Canary Islands, Spain): an overview. In Climates of the Past: Proceedings of the CLIP Meeting 1995 (eds Meco, J and Petit-Maire, N), pp. 123–36. Gran Canaria: Universidad de Las Palmas de Gran Canaria, Servicio de Publicaciones.Google Scholar
Meco, J, Scaillet, S, Guillou, H, Lomoschitz, A, Carracedo, JC, Ballester, J, Betancort, J-F and Cilleros, A (2007) Evidence for long-term uplift on the Canary Islands from emergent Mio–Pliocene littoral deposits. Global and Planetary Change 57, 222–34. https://doi.org/10.1016/j.gloplacha.2006.11.040.CrossRefGoogle Scholar
Meireles, RP, Faranda, C, Gliozzi, E, Pimentel, A, Zanon, V and Ávila, SP (2012) Late Miocene marine ostracods from Santa Maria Island, Azores (NE Atlantic): Systematics, palaeoecology and palaeobiogeography. Revue de Micropaléontologie 55, 133–48. https://doi.org/10.1016/j.revmic.2012.06.003.CrossRefGoogle Scholar
Meireles, RP, Keyser, D and Ávila, SP (2014) The Holocene to Recent ostracods of the Azores (NE Atlantic): systematics and biogeography. Marine Micropaleontology 112, 1326. https://doi.org/10.1016/j.marmicro.2014.08.002.CrossRefGoogle Scholar
Menesini, E (1969) Ittiodontoliti Miocenici di Terra d’Otranto (Puglia). Palaeontolographia Italica 65, 161.Google Scholar
Müller, J and Henle, FGJ (1839) Systematische Beschreibung der Plagiostomen. Veit & Co., Berlin, vol. 2, 73 pp.Google Scholar
Nolf, D (1988) Les otolithes de téléosténs éocènes d’Aquitaine (sud-ouest de la France) et leur intérêt stratigraphique. Académie Royale de Belgique, Mémoires de la Classe des Sciences Collection 4, (Serie 2) 19, 1147. Bruxelles.Google Scholar
Obrador, A and Mercadal, B (1973) Nuevas localidades con fauna ictiológica para el Neógeno menorquín. Acta Geológica Hispánica 8, 115–19.Google Scholar
O’Dea, A, Lessios, HA, Coates, AG, Eytan, RI, Restrepo-Moreno, SA, Cione, AL, Collins, LS, de Queiroz, A, Farris, DW, Norris, RD, Stallard, RF, Woodburne, MO, Aguilera, O, Aubry, M-P, Berggren, WA, Budd, AF, Cozzuol, MA, Coppard, SE, Duque-Caro, H, Finnegan, S, Gasparini, GM, Grossman, EL, Johnson, KG, Keigwin, LD, Knowlton, N, Leigh, EG, Leonard-Pingel, JS, Marko, PB, Pyenson, ND, Rachello-Dolmen, PG, Soibelzon, E, Soibelzon, L, Todd, JA, Vermeij, GJ and Jackson, JBC (2016) Formation of the Isthmus of Panama. Science Advances 2, e1600883. https://doi.org/10.1126/sciadv.1600883.CrossRefGoogle ScholarPubMed
Pankhurst, NW and Porter, MJR (2003) Cold and dark or warm and light: variations on the theme of environmental control of reproduction. Fish Physiology and Biochemistry 28, 385–9. https://doi.org/10.1023/B:FISH.0000030602.51939.50.CrossRefGoogle Scholar
Pepin, P (1991) Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48, 503–18. https://doi.org/10.1139/f91-065.CrossRefGoogle Scholar
Poli, JX (1795) Testacea utriusque Siciliae eorumque historia et anatome tabulis aeneis illustrata. Ex Regio Typographeio, Parmae 2, pp. i–xlix, [1–2], 75–264, pls 19–39.Google Scholar
Poloczanska, ES, Burrows, MT, Brown, CJ, García Molinos, J, Halpern, BS, Hoegh-Guldberg, O, Kappel, CV, Moore, PJ, Richardson, AJ, Schoeman, DS and Sydeman, WJ (2016) Responses of marine organisms to climate change across oceans. Frontiers Marine Science 3, 62. https://doi.org/10.3389/fmars.2016.00062.CrossRefGoogle Scholar
Quignard, J-P and Pras, A (1986) Scaridae. In Fishes of the North-eastern Atlantic and the Mediterranean (eds Whitehead, PJP, Bauchot, M-L, Hureau, J-C, Nielsen, J and Tortonese, E), pp. 943–44. UNESCO, Paris 2.Google Scholar
Rafinesque, CS (1810). Caratteri di alcuini nuovi generi e nuove spece di animali e piante della Sicilia. Parte 1. Stampe di Sanfilippo, Palermo, 105 pp.Google Scholar
Rafinesque, CS (1818) Discoveries in natural history, made during a journey through the western region of the United States. The American Monthly Magazine and Critical Review 3(5), 354–56.Google Scholar
Ramalho, RS, Helffrich, G, Madeira, J, Cosca, M, Thomas, C, Quartau, R, Hipólito, A, Rovere, A, Hearty, PJ and Ávila, SP (2017) The emergence and evolution of Santa Maria Island (Azores) – the conundrum of uplifted islands revisited. Geological Society of America Bulletin 129, 372–90. https://doi.org/10.1130/B31538.1.CrossRefGoogle Scholar
Randall, JE (1990) Scaridae. In Check-List of the Fishes of the Eastern Tropical Atlantic (eds Quero, JC, Hureau, JC, Karrer, C, Post, A and Saldanha, L), pp. 883–7. JNICT, Lisbon; SEI, Paris; and UNESCO, Paris 2.Google Scholar
Raposo, VB, Melo, CS, Silva, L, Ventura, A, Câmara, R, Pombo, J, Johnson, ME and Ávila, SP (2018) Comparing methods of evaluation of geosites: the fossiliferous outcrops of Santa Maria Island (Azores, NE Atlantic) as a case study for sustainable island tourism. Sustainability 10, 3596. https://doi.org/10.3390/su10103596.CrossRefGoogle Scholar
Rebelo, AC, Meireles, RP, Barbin, V, Neto, AI, Melo, C and Ávila, SP (2016a) Diagenetic history of lower Pliocene rhodoliths of the Azores Archipelago (NE Atlantic): application of cathodoluminescence techniques. Micron 80, 112–21. https://doi.org/10.1016/j.micron.2015.10.004.CrossRefGoogle ScholarPubMed
Rebelo, AC, Rasser, MW, Kroh, A, Johnson, ME, Ramalho, RS, Melo, C, Uchman, A, Berning, B, Silva, L, Zannon, V, Neto, AI, Cachão, M and Ávila, SP (2016b) Rocking around a volcanic island shelf: Pliocene Rhodolith beds from Malbusca, Santa Maria Island (Azores, NE Atlantic). Facies 62, 22. https://doi.org/10.1007/s10347-016-0473-9.CrossRefGoogle Scholar
Rebelo, AC, Rasser, MW, Riosmena-Rodríguez, R, Neto, AI and Ávila, SP (2014) Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation. Phytotaxa 190, 370–82. http://dx.doi.org/10.11646/phytotaxa.190.1.22.CrossRefGoogle Scholar
Ricchi, A, Quartau, R, Ramalho, RS, Romagnoli, C, Casalbore, D, da Cruz, JV, Fradique, C and Vinhas, A (2018) Marine terrace development on reefless volcanic islands: New insights from high-resolution marine geophysical data offshore Santa Maria Island (Azores Archipelago). Marine Geology 406, 4256. https://doi.org/10.1016/j.margeo.2018.09.002.CrossRefGoogle Scholar
Rocha, LA, Brito, A and Robertson, DR (2012) Sparisoma choati, a new species of Parrotfish (Labridae: Scarinae) from the tropical eastern Atlantic. Zootaxa 3152, 6167. http://dx.doi.org/10.11646/zootaxa.3152.1.3.CrossRefGoogle Scholar
Sacco, F (1916) Apparati dentali di Labrodon e di Chrysophrys del Pliocene italiano. Memorie della Reale Accademia delle Scienze di Torino 60, 144–9.Google Scholar
Santos, RS, Hawkins, S, Monteiro, LR, Alves, M and Isidro, EJ (1995) Marine research, resources and conservation in the Azores. Aquatic Conservation: Marine and Freshwater Ecosystems 5, 311–54. https://doi.org/10.1002/aqc.3270050406.CrossRefGoogle Scholar
Santos, A, Mayoral, E, Baarli, BG, da Silva, CM, Cachão, M and Johnson, ME (2012a) Symbiotic association of a Pyrgomatid barnacle with a coral from the volcanic Middle Miocene shoreline (Porto Santo, Madeira archipelago, Portugal). Palaeontology 55, 173–82. https://doi.org/10.1111/j.1475-4983.2011.01105.x.CrossRefGoogle Scholar
Santos, A, Mayoral, EJ, da Silva, CM, Cachão, M and Johnson, ME (2011) Miocene intertidal zonation on a volcanically active shoreline: Porto Santo in the Madeira Archipelago, Portugal. Lethaia 44, 2632. https://doi.org/10.1111/j.1502-3931.2010.00222.x.CrossRefGoogle Scholar
Santos, A, Mayoral, E, Dumont, CP, da Silva, CM, Ávila, SP, Baarli, BG, Cachão, M, Johnson, ME and Ramalho, RS (2015) Role of environmental change in rock-boring echinoid trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 432, 114. https://doi.org/10.1016/j.palaeo.2015.04.029.CrossRefGoogle Scholar
Santos, A, Mayoral, E, Johnson, ME, Baarli, BG, Cachão, M, da Silva, CM and Ledesma-Vázques, J (2012b) Extreme habitat adaptation by boring bivalves on volcanically active paleoshores from North Atlantic Macaronesia. Facies 58, 325–38. https://doi.org/10.1007/s10347-011-0283-z.CrossRefGoogle Scholar
Sauvage, H-E (1875) Note sur le genre Nummopalatus et sur les espèces de ce genre trouvés dans les terrains tertiaires de la France. Bulletin de la Société Géologique de France 3, 613–42.Google Scholar
Searle, R (1980) Tectonic pattern of the Azores spreading centre and triple junction. Earth and Planetary Science Letters 51, 415–34.CrossRefGoogle Scholar
Sibrant, ALR, Hildenbrand, A, Marques, FO and Costa, ACG (2015) Volcano-tectonic evolution of the Santa Maria Island (Azores): Implications for paleostress evolution at the western Eurasia-Nubia plate boundary. Journal of Volcanology and Geothermal Research 291, 4962.CrossRefGoogle Scholar
Simonelli, V (1889) Terreni e fossili dell’Isola di Pianosa nel Mar Tirreno. Bolletino del Reale Comitato Geolologico d’Italia 10, 193237.Google Scholar
Sowerby, GB (1847) Thesaurus conchyliorum, or Monographs of genera of shells. Sowerby, 70 Great Russel Street, Bloomsbury, London.Google Scholar
Swainson, W (1839) The Natural History of Fishes, Amphibians, & Reptiles, or Monocardian Animals. Vol. II. Lardner’s Cabinet Cyclopædia. London: Longman, Orme, Brown, Green & Longmans; and John Taylor, 452 pp.CrossRefGoogle Scholar
Tuya, F, Betancort, JF, Haroun, R, Espino, F, Lomoschitz, A and Meco, J (2017) Seagrass paleo-biogeography: Fossil records reveal the presence of Halodule cf. in the Canary Islands (eastern Atlantic). Aquatic Botany 143, 17. https://doi.org/10.1016/j.aquabot.2017.08.002.CrossRefGoogle Scholar
Uchman, A, Johnson, ME, Rebelo, AC, Melo, C, Cordeiro, R, Ramalho, RS and Ávila, SP (2016) Vertically-oriented trace fossil Macaronichnus segregatis from Neogene of Santa Maria Island (Azores; NE Atlantic) records vertical fluctuations of the coastal groundwater mixing zone on a small oceanic island. Geobios 49, 229–41. https://doi.org/10.1016/j.geobios.2016.01.016.CrossRefGoogle Scholar
Uchman, A, Quintino, V, Rodrigues, AM, Johnson, ME, Melo, C, Cordeiro, R, Ramalho, RS and Ávila, SP (2017) The trace fossil Diopatrichnus santamariaensis nov. isp. – a shell armoured tube from Pliocene sediments of Santa Maria Island, Azores (NE Atlantic Ocean). Geobios 50, 459–69. https://doi.org/10.1016/j.geobios.2017.09.002.CrossRefGoogle Scholar
Valenciennes, M (1839) Histoire Naturelle des Poissons. FG Levrault, Paris, Tome 1, 573 pp.Google Scholar
van der Kraak, G and Pankhurst, NW (1997) Temperature effects on the reproductive performance of fish. In Global Warming: Implications for Freshwater and Marine Fish (eds Wood, CM and Macdonald, DG), pp. 159–76. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vicens, D and Rodríguez-Perea, A (2003) Vertebrats fòssils (Pisces i Reptilia) del Burdigalià de cala Sant Vicenç (Pollença, Mallorca). Bolletí de la Societat d’Història Natural de les Balears 46, 117–30.Google Scholar
Vogt, PR and Jung, W-Y (2018) The “Azores Geosyndrome” and plate tectonics: research history, synthesis, and unsolved puzzles. In Volcanoes of the Azores. Revealing the Geological Secrets of the Central Northern Atlantic Islands (eds Kueppers, U and Beier, C), pp. 2756. Berlin: Springer.CrossRefGoogle Scholar
Wallace, AR (1880) Island Life, or, the Phenomena and Causes of Insular Faunas and Floras: Including a Revision and Attempted Solution of the Problem of Geological Climates. London: Macmillan, 526 p.Google Scholar
Whittaker, RJ, Triantis, KA and Ladle, RJ (2010) A general dynamic theory of oceanic island biogeography: extending the MacArthur–Wilson theory to accommodate the rise and fall of volcanic islands. In The Theory of Island Biogeography Revisited (eds Losos, JB and Ricklefs, RE), pp. 88115. Princeton, New Jersey: Princeton University Press.Google Scholar
Winkelmann, K, Buckeridge, JS, Costa, AC, Dionísio, MAM, Medeiros, A, Cachão, M and Ávila, SP (2010) Zullobalanus santamariaensis sp. nov., a new late Miocene barnacle species of the family Archeobalanidae (Cirripedia: Thoracica), from the Azores. Zootaxa 2680, 3344. http://dx.doi.org/10.11646/zootaxa.2680.1.3.CrossRefGoogle Scholar
Zbyszewski, G and d’Almeida, FM (1950) Os peixes miocénicos portugueses. Comunicações dos Serviços Geológicos de Portugal 31, 309423.Google Scholar
Zbyszewski, G and Ferreira, O da V (1962) La faune miocène de l’île de Santa Maria (Açores). Comunicações dos Serviços Geológicos de Portugal 46, 247–89.Google Scholar