Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T18:20:58.504Z Has data issue: false hasContentIssue false

Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton: an example from North Korea

Published online by Cambridge University Press:  10 June 2008

PENG PENG*
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China State Key Laboratory of Lithospheric Evolution, Beijing 100029, China
MINGGUO ZHAI
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China State Key Laboratory of Lithospheric Evolution, Beijing 100029, China
JINGHUI GUO
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China State Key Laboratory of Lithospheric Evolution, Beijing 100029, China
HUAFENG ZHANG
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
YANBIN ZHANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Beijing 100029, China
*
§Author for correspondence: [email protected]

Abstract

More than ten Triassic syenite plutons are revealed to be distributed in North Korea along the boundary to South Korea. The Tokdal Complex is one of these but is unique in its incorporation of early pyroxenite cumulate in the clinopyroxene/amphibole/biotite/nepheline-bearing syenite main body. A SHRIMP U–Pb zircon age of 224 ± 4 Ma was obtained from a biotite syenite sample. Clinopyroxene in pyroxenite is zoned, with either phlogopite and apatite inclusion or ilmenite and magnetite exsolution, and may have resulted from crystallization at high pressure in an active continental margin arc environment followed by ascent and decompression. The pyroxenite and syenite are enriched in light REE and LILE, but strongly depleted in HFSE, with 87Sr/86Srt values of ~0.7115 and ϵNdt values of −14 to −20 (t = 224 Ma). The Tokdal Complex could have originated from an enriched lithospheric mantle and undergone assimilation of juvenile materials during differentiation. It indicates an extension of post-collisional magmatism in the Sino-Korean craton. This complex along with many other Triassic plutons in the Sino-Korean craton together constitute three syenite belts along the northern, southern and eastern margins of the craton, possibly resulting in its final configuration in eastern Asia.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buseck, P. R., Nord, G. L. Jr & Veblen, D. R. 1980. Subsolidus phenomena in pyroxenes. In Pyroxenes (ed. Prewitt, C. T.), pp. 117–211. Reviews in Mineralogy 7.Google Scholar
Chang, K. H. & Park, S. O. 2001. Palaeozoic Yellow Sea Transform Fault: its role in the tectonic history of Korea and adjacent regions. Gondwana Research 4, 588–9.CrossRefGoogle Scholar
Chen, D.-G., Xia, Q.-K. & Zhi, X.-C. 1997. Geochemistry of megacrysts in Cenozoic basalts of Eastern China. Acta Geoscientia Sinica 18, 299305 (in Chinese).Google Scholar
Chen, J.-F., Xie, Z., Li, H.-M., Zhang, X.-D., Zhou, T.-X., Park, Y. S., Ahn, K. S., Chen, D.-G. & Zhang, X. 2003. U–Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal 37, 3546.CrossRefGoogle Scholar
Dickinson, W. R. & Hatherton, T. 1967. Andesitic volcanism and seismicity around the Pacific. Science 157, 801–3.CrossRefGoogle ScholarPubMed
Fitton, J. G. & Upton, B. G. (eds) 1987. Alkaline igneous rocks. Geological Society of London, Special Publication no. 30, 568 pp.Google Scholar
Foley, S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28, 435–53.CrossRefGoogle Scholar
Frey, F. A., Green, D. H. & Roy, S. D. 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology 19, 463513.CrossRefGoogle Scholar
Guo, J.-H., Chen, F.-K., Zhang, X.-M., Siebel, W. & Zhai, M.-G. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, eastern China: zircon U–Pb geochronology. Acta Petrologica Sinica 21, 12811301 (in Chinese).Google Scholar
Guo, J.-H., Zhai, M.-G., Oh, C.-W. & Kim, S.-W. 2004. 230 Ma eclogite from Bibong, Hongseong area, Gyeonggi Massif, South Korea: HP metamorphism, zircon SHRIMP U–Pb ages and tectonic implication. Gondwana to Asia, International Workshop and Field Excursion (Abstract Volume), 11–12.Google Scholar
Ishiwatari, A. & Tsujimori, T. 2003. Palaeozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: a synthesis. Island Arc 12, 190206.CrossRefGoogle Scholar
Jahn, B.-M., Wu, F.-Y., Lo, C.-H. & Tsai, C.-H. 1999. Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157, 119–46.CrossRefGoogle Scholar
Jiang, N., Sun, S.-H., Chu, X.-L., Mizuta, T. & Ishiyanma, D. 2003. Mobilization and enrichment of high-field strength elements during late- and post-magmatic processes in the Shuiquangou syenitic complex, Northern China. Chemical Geology 200, 117–28.CrossRefGoogle Scholar
Kinzler, R. 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research 102, 853–74.CrossRefGoogle Scholar
Lee, K.-S., Chang, H.-W. & Park, K.-H. 1998. Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea: age and tectonic implication. Precambrian Research 89, 4757.CrossRefGoogle Scholar
Lu, X.-P., Wu, F.-Y., Zhao, C.-B. & Zhang, Y.-B. 2003. Triassic U–Pb age for zircon from granites in the Tonghua area and its response to the Dabie-Sulu ultrahigh-pressure collisional orogenesis. Chinese Science Bulletin 48, 1616–23.CrossRefGoogle Scholar
Lubala, R. T., Frick, C., Roders, J. H. & Walraven, F. 1994. Petrogenesis of syenites and granites of the Schiel Alkaline complex, Northern Transvaal, South Africa. Journal of Geology 102, 307–9.CrossRefGoogle Scholar
Ludwig, K. R. 2002. SQUID 1.02, a user's manual. Berkeley Geochronology Center, Special Publication no. 2.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot/EX Version 3.00. A Geochronological Toolkit for Microsoft Excel, vol. 4. Berkeley Geochronology Center Special Publication, 71 pp.Google Scholar
Lynch, D. J., Musselman, T. E., Gutmann, J. T. & Patchett, P. J. 1993. Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico. Lithos 29, 295302.CrossRefGoogle Scholar
Mu, B.-L., Shao, J.-A., Chu, Z.-Y., Yan, G.-H. & Qiao, G.-S. 2001. Sm-Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei province, China. Acta Petrologica Sinica 17, 358–65 (in Chinese).Google Scholar
Nemchin, A. A. & Pidgeon, R. T. 1997. Evolution of the Darling Range Batholith, Yilgarn Craton, Western Australia: A SHRIMP zircon study. Journal of Petrology 38, 625–49.CrossRefGoogle Scholar
Nimis, P. & Taylor, W. 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology 139, 541–54.CrossRefGoogle Scholar
Nisbet, E. G. & Pearce, J. A. 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology 63, 149–60.CrossRefGoogle Scholar
Oh, C.-W. 2006. A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research 9, 4761.CrossRefGoogle Scholar
Oh, C.-W., Kim, S.-W., Choi, S.-G., Zhai, M.-G., Guo, J.-H. & Krishnan, S. 2005. First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology 113, 226–32.CrossRefGoogle Scholar
Paek, R.-J., Gap, K.-H. & Jon, G.-P. (eds) 1996. Geology of Korea. Pyongyang: Foreign Languages Books Publishing House, 631 pp.Google Scholar
Pidgeon, R. T. 1992. Recrystallization of oscillatory zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology 110, 463–72.CrossRefGoogle Scholar
Rajesh, H. M. 2006. Progressive or continual exsolution in pyroxenes: an indicator of polybaric igneous crystallization for the Perinthatta anorthositic gabbro, northern Kerala, southwestern India. Journal of Asian Earth Sciences 26, 541–53.CrossRefGoogle Scholar
Ree, J.-H., Cho, M., Kwon, S.-T. & Nakamura, R. 1996. Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology 24, 1071–4.2.3.CO;2>CrossRefGoogle Scholar
Ren, K.-X., Yan, G.-H., Mu, B.-L., Cai, J.-H., Tong, Y., Li, F.-T., Zhao, F.-S., Gu, L.-B., Yang, B. & Chu, Z.-Y. 2005. Geochemistry and Nd, Sr, Pb isotopic characteristics of the alkali-rich intrusive rocks in Alxa Fault Block, Western Inner Mongolia and their implications. Earth Science Frontiers 12, 292302 (in Chinese).Google Scholar
Savelli, C. 2000. Subduction-related episodes of K-alkaline magmatism (15-0.1 Ma) and geodynamic implications in the north Tyrrhenian – central Italy region: a review. Journal of Geodynamics 30, 575–91.CrossRefGoogle Scholar
Shandong (Shandong Provincial No. 4 Bureau of Geology and Mineral Exploration). 2003. Regional Geology of Shandong Province. Beijing: Geological Publishing House, 970 pp. (in Chinese).Google Scholar
Stern, R. J., Jackson, M. C., Fryer, P. & Ito, E. 1993. O, Sr, Nd, and Pb isotopic composition of Kasuga Cross-Chain in the Mariana arc: a new perspective on the K-h relationship. Earth and Planetary Science Letters 119, 459–75.CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Thorpe, R. S. & Tindle, A. G. 1992. Petrology and petrogenesis of a Tertiary bimodal dolerite-peralkaline/subalkaline-trachyte/rhyolite dyke association from Lundy, Bristol Channel, UK. Geological Journal 27, 101–17.CrossRefGoogle Scholar
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P. & Deng, W. 1996. Postcollision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology 37, 4571.CrossRefGoogle Scholar
Wass, S. 1979. Multiple origins of clinopyroxene in alkali basaltic rocks. Lithos 12, 115–32.CrossRefGoogle Scholar
Wu, F.-Y., Han, R.-Y., Yang, J.-H., Wilde, S. A., Zhai, M.-G. & Park, S.-C. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chemical Geology 238, 232–48.CrossRefGoogle Scholar
Xu, B.-L., Yan, G.-H., Lu, F.-X., Zou, T.-R., Tong, Y., Cai, J.-H., Liu, C.-X. & Zhang, H.-F. 2001. Petrology of rich-alkaline and alkaline intrusive complexes in Beishan-Alxa Region. Acta Petrologica et Mineralogica 20, 263–72 (in Chinese).Google Scholar
Xu, J.-W. & Zhu, G. 1995. Discussion on tectonic models for the Tan-Lu fault zone, Eastern China. Journal of Geology and Mineral Resources of North China 10, 121–33 (in Chinese).Google Scholar
Yan, G. H., Mu, B.-L., Xu, B.-L., He, G.-Q., Tan, L.-K., Zhao, H., He, Z.-F., Zhang, R.-G. & Qiao, G.-S. 2000 a. Triassic alkaline intrusives in the Yanliao-Yinshan area: their chronology, Sr–Nd–Pb isotopic features and significances. Science in China (D) 30, 383–7 (in Chinese).Google Scholar
Yan, G.-H., Tan, L.-K., Xu, B.-L., Mou, B.-L., Shao, H.-X., Cheng, T.-L., Tong, Y., Ren, K.-X. & Yang, B. 2001. Petrogeochemical characteristics of Indosinian alkaline intrusions in Yinshan area. Acta Petrologica et Mineralogica 20, 281–92 (in Chinese).Google Scholar
Yan, G.-H., Xu, B.-L., Mu, B.-L., Wang, G.-Y., Chang, Z.-S., Chen, T.-L., Zhao, Y.-C., Wang, X.-F., Zhang, R.-H., Qiao, G.-S. & Chu, Z.-Y. 2000 b. Alkaline intrusives at the east foot of the Taihang-Da Hinggan Mountains: chronology, Sr, Nd and Pb isotopic characteristics and their implications. Acta Geologica Sinica 74, 774–81.Google Scholar
Yan, J. & Chen, J. F. 2005. Clinopyroxene Megacrysts in the Late Mesozoic Basalts from Daxizhuang, Jiaozhou. Journal of Anhui University of Science and Technology (Natural Science) 25, 920 (in Chinese).Google Scholar
Yang, J.-H., Chung, S.-L., Wilde, S., Wu, F.-Y., Chu, M.-F., Lo, C.-H. & Fan, H.-R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology 214, 99125.CrossRefGoogle Scholar
Yin, A. & Nie, S. 1993. An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, Eastern Asian. Tectonics 12, 801–13.CrossRefGoogle Scholar
Zanvilevich, A. N., Litvinovsky, B. A., Wickham, S. M. & Bea, F. 1995. Genesis of alkaline and peralkaline syenite–granite series; the Kharitonovo Pluton (Transbaikalia, Russia). Journal of Geology 103, 127–45.CrossRefGoogle Scholar
Zhai, M.-G., Guo, J.-H., Li, Z., Chen, D.-Z., Peng, P., Li, T.-S., Hou, Q.-L. & Fan, Q.-C. 2007. Linking the Sulu UHP belt to the Korean Peninsula: evidence of eclogite, Precambrian basement and Paleozoic sedimentary basins. Gondwana Research 12, 388403.CrossRefGoogle Scholar
Zhang, H.-F., Sun, M., Zhou, M.-F., Fan, W.-M., Zhou, X.-H. & Zhai, M.-G. 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China craton: evidence from Sr–Nd–Pb isotopic systematics of mafic igneous rocks. Geological Magazine 141, 5562.Google Scholar
Zhang, Z.-W., Zhu, B.-Q. & Chang, X.-Y. 2000. Nd, Sr, Pb isotopic geochemistry of the alkaline-rich intrusive rocks in east Qinling, central China and its tectonic significance. Geochemica 29, 455–61 (in Chinese).Google Scholar
Zhang, Z.-W., Zhu, B.-Q. & Chang, X.-Y. 2003. The geochemistry of the alkaline-rich intrusive rocks in east Qinling, central China. Earth Science Frontiers 10, 507–19 (in Chinese).Google Scholar
Zhang, Z.-W., Zhu, B.-Q., Chang, X.-Y. & Xie, J. 2002. Major element characteristics of the alkali-rich intrusive rocks zone and distribution of the subzones in the northern part of east Qinling, China. Acta Petrologica Sinica 18, 468–74 (in Chinese).Google Scholar
Zhao, G.-C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archaean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research 107, 4573.CrossRefGoogle Scholar
Zhao, J.-X., Shiraishi, K., Ellis, D. J. & Sheraton, J. W. 1995. Geochemical and isotopic studies of syenites from the Yamoto Mountains, East Antarctica: implication for the origin of syenitic magmas. Geochimica et Cosmochimica Acta 59, 1363–85.CrossRefGoogle Scholar
Supplementary material: File

Peng supplementary material

Supplementary appendix

Download Peng supplementary material(File)
File 408.1 KB