Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T04:09:53.719Z Has data issue: false hasContentIssue false

The Petrogenesis of a Spilitic Rock Series from New Zealand

Published online by Cambridge University Press:  01 May 2009

M. H. Battey
Affiliation:
Department of Geology, King's College, Newcastle-Upon-Tyne.

Abstract

Well-preserved examples of spilites show marked affinities with certain tholeiites in texture, chemistry, differentiation trend, and in some aspects of their mineralogy. The presence in them of albite and apparently primary chlorite, in association with unaltered augite, is ascribed to the influence of water as a component of the magma, and the high content of alkali in the basic members to retention of volatile oxides present in tholeiitic magma. Evidence is lacking of large-scale metasomatism by external agencies and the postulate of a special primary magma seems unwarranted. A series may be traced, in rocks of different environments, from “dry tholeiite” to “wet tholeiite” to spilite.

Four new rock analyses and one of chlorite are given.

Type
Articles
Copyright
Copyright © Cambridge University Press 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Backlund, H. G., 1930. Die Magmagesteine der Geosynklinale von Nowaja Semlja. Rept. of scientific results of Norwegian Exped. to Novaya Zemlya, 1921, No. 45. Oslo.Google Scholar
Bailey, E. B. et al. , 1924. The Tertiary and the post-Tertiary geology of Mull, Loch Aline and Oban. Mem. Geol. Surv. Scot.Google Scholar
Balsillie, D., 1932. The Ballantrae igneous complex, S. Ayrshire. Geol. Mag., lxix, 107130.CrossRefGoogle Scholar
Bartrum, J. A., 1929. Igneous rocks at Mount Camel, Hohoura, North Auckland. N.Z. Journ. Sci. & Techn., x, 356360.Google Scholar
Bartrum, J. A., 1936. Spilitic rocks in New Zealand. Geol. Mag., lxxiii, 414423.CrossRefGoogle Scholar
Battey, M. H., 1950. The geology of Rangiawhia Peninsula, Doubtless Bay, North Auckland. Rec. Auck. Inst. & Mus., iv, (1), 3559.Google Scholar
Battey, M. H., 1951. Notes to accompany a topographical and provisional geolo gical map of Great Island, Three Kings Group. Rec. Auck. Inst. & Mus., iv. (2) 93–8.Google Scholar
Battey, M. H., 1954. The occurrence of babingtonite in spilite from Three Kings Islands. Rec. Auck. Inst. & Mus., iv (5), 263–6.Google Scholar
Battey, M. H., 1955. The petrology of some keratophyres from New Zealand. Geol. Mag., xcii, 104126.CrossRefGoogle Scholar
Benson, W. N., 1915. The geology and petrology of the Great Serpentine Belt of New South Wales. Part iv. The dolerites, spilites and keratophyres of the Nundle district. Proc. Linn. Soc. N.S. W., xl, 121173.Google Scholar
Bowen, N. L., 1910. Diabase and granophyre of the Gowganda Lake district, Ontario. Journ. Geol., xviii, 658674.CrossRefGoogle Scholar
Campbell, R., and Lunn, J. W., 1927. The tholeiites and dolerites of the Dalmahoy syncline. Trans. Roy. Soc. Edinb., lv, 495504.Google Scholar
Chayes, F., 1955. Potash feldspar as a by-product of the biotite-chlorite transformation. Journ. Geol., lxiii, 7582.CrossRefGoogle Scholar
Coombs, D. S., 1953. The pumpellyite mineral series. Miner. Mag., xxx, 113135.Google Scholar
Cox, A. H., 1915. The Geology of the District between Abereiddy and Abercastle (Pembrokeshire). Quart. Journ. Geol. Soc., Ixxi, 273342.CrossRefGoogle Scholar
Dewey, H., and Flett, J. S., 1911. Some British pillow-lavas and the rocks associated with them. Geol. Mag., (Dec. 5), viii, 202209, 241248.CrossRefGoogle Scholar
Eckermann, H. von., 1938. A contribution to the knowledge of the late sodic differentiates of basic eruptives. Journ. Geol., xlvi, 412437.CrossRefGoogle Scholar
Edwards, A. B., 1942. Differentiation of the dolerites of Tasmania. Journ. Geol., I, 451480, 579610.CrossRefGoogle Scholar
Emerson, B. K., 1905. Plumose diabase and palagonite from the Holyoke trap sheet. Bull. Geol. Soc. Amer., xvi, 91130.CrossRefGoogle Scholar
Eskola, Pentti, 1925. On the petrology of Eastern Fennoscandia, I. The mineral development of basic rocks in the Karelian formations. Fennia, xlv, 193.Google Scholar
Falconer, J. D., 1908. Igneous geology of the Bathgate and Linlithgow Hills, Pt. II. Trans. Roy. Soc. Edinb., xlv, 133150.Google Scholar
Fenner, C. N., 1931. The residual liquids of crystallizing magmas. Miner. Mag., xxii, 539560.Google Scholar
Flett, J. S., 1907. in The geology of the country around Plymouth and Liskeard. Mem. Geol. Surv. Gt. Brit.Google Scholar
Flett, J. S., 1913. in Geology of the country around Newton Abbott. Mem. Geol. Surv. Gt. Brit.Google Scholar
Fromme, J., 1902. Brunsvigit, eine neues Leptochlorit aus dem Radauthale. Min. Pet. Mitt., xxi, 171–7.Google Scholar
Gilluly, J., 1935. Keratophyres of eastern Oregon and the spilite problem. Amer. Journ. Sci. (5), xxix, 225252; 336352.CrossRefGoogle Scholar
Greenly, E., 1919. Geology of Anglesey, Vol. I. Mem. Geol. Surv. Gt. Brit.Google Scholar
Hess, H. H., 1949. Chemical composition and optical properties of common clinopyroxenes. Amer. Mineral., xxxiv, 621666.Google Scholar
Holzner, J., 1938. Eisenchlorit aus dem Lahngebiet: chemische Formel und Valenzausgleich bei den Eisenchloriten. Neues Jb. Min., B.B. lxxiii, Abt. A., 389417.Google Scholar
Kennedy, W. Q., 1931. The parent magma of the British Tertiary Province. Geol. Surv. Summ. Progr. for 1930, Pt. II, 6173.Google Scholar
Kennedy, W. Q., 1933. Trends of differentiation in basaltic magmas. Amer. Journ. Sci., xxv, 239256.CrossRefGoogle Scholar
Niggli, P., 1952. The chemistry of the Keweenawan lavas. Amer. Journ. Sci., Bowen Volume, 381412.Google Scholar
Nockolds, S. R., 1954. Average Chemical Composition of some Igneous Rocks. Bull. Geol. Soc. Amer., lxv, 1021.Google Scholar
Nockolds, S. R., and Allen, R., 1953. The geochemistry of some igneous rock series. Geochimica et Cosmochimica Acta, iv, 105142.CrossRefGoogle Scholar
Orcel, M. J., 1927. Recherches sur la composition chimique des chlorites. Bull. soc. franç. min., I, 75456.Google Scholar
Peacock, M. A., 1930. The distinction between chlorophaeite and palagonite. Geol. Mag., lxvii, 170178.CrossRefGoogle Scholar
Poldervaart, A., 1946. The petrology of the Mount Arthur complex. East Griqualand. Trans. Roy. Soc. South Africa, xxxi, 83110.CrossRefGoogle Scholar
Roever, W. P. de, 1942. Oliyine-basalts and their alkaline differentiates in the Permian of Timor. Geological Expedition to the Lesser Sunda Islands, iv, 213289.Google Scholar
Sargent, H. C., 1917. On a spilitic facies of the Lower Carboniferous lava-flows in Derbyshire. Quart. Journ. Geol. Soc., lxxiii, 1723.Google Scholar
Scott, Beryl, 1951a. A note on the occurrence of intergrowth between diopsidic augite and albite, and of hydfogrossular from King Island, Tasmania. Geol. Mag., lxxxviii, 429431.CrossRefGoogle Scholar
Scott, Beryl, 1951b. The petrology of the volcanic rocks of south east King Island, Tasmania. Proc. Roy. Soc. Tasmania, 1950, 113136.Google Scholar
Shannon, E. V., 1924. The mineralogy and petrology of intrusive Triassic diabase at Goose Creek, Loudoun County, Virginia. Proc. U.S. Nat. Mus., lxvi, 186.Google Scholar
Sundius, N., 1915. Beiträge zur Geologic des südlichen Teils des Kirunagebiets. Geologic des Kirunagebiets 4. Uppsala.Google Scholar
Sundius, N., 1930. On the spilitic rocks. Geol. Mag., lxvii, 117.CrossRefGoogle Scholar
Tomkeieff, S. I., 1941. Metasomatism in the basalt of Haddenrig quarry near Kelso and the veining of the rocks exposed there. Miner. Mag., xxv, 4559.Google Scholar
Turner, F. J., 1948. Mineralogical and structural evolution of the metamorphic rocks. Geol. Soc. Amer. Mem., xxx.Google Scholar
Turner, F. J., and Verhoogen, J., 1951. Igneous and metamorphic petrology. New York, McGraw Hill.Google Scholar
Tuttle, O. F., and Bowen, N. L., 1950. High-temperature albite and contiguous feldspars. Journ. Geol., lviii, 572583.CrossRefGoogle Scholar
Vincent, E. A., 1950. The chemical composition and physical properties of the residual glass of the Kap Daussy tholeiite, east Greenland. Miner. Mag., xxix, 4662.Google Scholar
Vincent, E. A., 1953. Hornblende-lamprophyre dykes of basaltic parentage from the Skaergaard area, East Greenland. Quart. Journ. Geol. Soc., cix, 2147.CrossRefGoogle Scholar
Walker, F., 1935. The late palaeozoic quartz-dolerites and tholeiites of Scotland. Miner. Mag., xxiv, 131159.Google Scholar
Walker, F., 1952. Differentiation in a quartz dolerite sill at Northfield Quarry, Stirlingshire. Trans. Edin. Geol. Soc., xv, 393405.CrossRefGoogle Scholar
Walker, F., and Poldervaart, A., 1949. Karroo dolerites of the Union of South Africa. Bull. Geol. Soc. Amer., lx, 591706.CrossRefGoogle Scholar
Walker, F., Vincent, H. G. C., and Mitchell, R. L., 1952. The chemistry and mineralogy of the Kinkell tholeiite, Stirlingshire. Miner. Mag., xxix, 895908.Google Scholar
Wells, A. K., 1923. The nomenclature of the spilitic rocks. Part II. The problem of the spilites. Geol. Mag., lx, 6274.CrossRefGoogle Scholar
Yoder, H. S. Jr, 1952. The MgO–Al2O3–SiO2–H2O system and related metamorphic facies. Amer. Journ. Sci. Bowen Volume, 569627.Google Scholar