Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T12:19:00.799Z Has data issue: false hasContentIssue false

Petrogenesis and tectonic evolution of metaluminous sub-alkaline granitoids from the Takab Complex, NW Iran

Published online by Cambridge University Press:  01 September 2010

ROBAB HAJIALIOGHLI*
Affiliation:
Department of Geology, University of Tabriz, 51664, Tabriz, Iran
MOHSSEN MOAZZEN
Affiliation:
Department of Geology, University of Tabriz, 51664, Tabriz, Iran
AHMAD JAHANGIRI
Affiliation:
Department of Geology, University of Tabriz, 51664, Tabriz, Iran
ROLAND OBERHÄNSLI
Affiliation:
Institut für Geowissenschaften, Universität Potsdam, Germany
BEATE MOCEK
Affiliation:
Department of Geology, University of Kansas, Lawrence, Kansas, USA
UWE ALTENBERGER
Affiliation:
Institut für Geowissenschaften, Universität Potsdam, Germany
*
§Author for correspondence: [email protected]

Abstract

The Takab complex is composed of a variety of metamorphic rocks including amphibolites, metapelites, mafic granulites, migmatites and meta-ultramafics, which are intruded by the granitoid. The granitoid magmatic activity occurred in relation to the subduction of the Neo-Tethys oceanic crust beneath the Iranian crust during Tertiary times. The granitoids are mainly granodiorite, quartz monzodiorite, monzonite and quartz diorite. Chemically, the magmatic rocks are characterized by ASI<1.04, AI<0.87 and high contents of CaO (up to ~14.5 wt%), which are consistent with the I-type magmatic series. Low FeOt/(FeOt+MgO) values (<0.75) as well as low Nb, Y and K2O contents of the investigated rocks resemble the calc-alkaline series. Low SiO2, K2O/Na2O and Al2O3 accompanied by high CaO and FeO contents indicate melting of metabasites as an appropriate source for the intrusions. Negative Ti and Nb anomalies verify a metaluminous crustal origin for the protoliths of the investigated igneous rocks. These are comparable with compositions of the associated mafic migmatites, in the Takab metamorphic complex, which originated from the partial melting of amphibolites. Therefore, crustal melting and a collision-related origin for the Takab calc-alkaline intrusions are proposed here on the basis of mineralogy and geochemical characteristics. The P–T evolution during magmatic crystallization and subsolidus cooling stages is determined by the study of mineral chemistry of the granodiorite and the quartz diorite. Magmatic crystallization pressure and temperature for the quartz-diorite and the granodiorite are estimated to be P~7.8±2.5 kbar, T~760±75°C and P~5±1 kbar, T~700°C, respectively. Subsolidus conditions are consistent with temperatures of ~620°C and ~600°C, and pressures of ~5 kbar and ~3.5 kbar for the quartz-diorite and the granodiorite, respectively.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

In Memory of Doctor Beate Mocek (1962–2010)

References

Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94, 401–19.CrossRefGoogle Scholar
Alavi, M. 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.CrossRefGoogle Scholar
Altherr, R. & Siebel, W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology 143, 397415.CrossRefGoogle Scholar
Babakhani, A. R. & Ghalamghash, J. 1990. Geological map of Iran, 1:100,000 series sheet Takht-e-Soleiman. Geological Survey of Iran.Google Scholar
Barker, F. 1979. Trondhjemite: definition, environment and hypothesis of origin. In Trondhjemites, dacites and related rocks (ed. Barker, F.), pp. 112. Amsterdam: Elsevier.Google Scholar
Beccaluva, L., Macciotta, G., Piccardo, G. B. & Zeda, O. 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology 77, 165–82.CrossRefGoogle Scholar
Berberian, M. & King, G. C. P. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–65.CrossRefGoogle Scholar
Berberian, F., Muir, I. D., Pankhurst, R. J. & Berberian, M. 1982. Late Cretaceous and early Miocene Andean- type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, London 139, 605–14.CrossRefGoogle Scholar
Blundy, J. D. & Holland, T. J. B. 1990. Calcic amphibole equilibria and a new amphibole plagioclase geothermometer. Contributions to Mineralogy and Petrology 104, 208–24.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
Christofides, G., Perugini, D., Koroneos, A., Soldatos, T., Poli, G., Eleftheriadis, G., Del Moro, A. & Neiva, A. M. 2007. Interplay between geochemistry and magma dynamics during magma interaction: an example from the Sithonia Plutonic Complex (NE Greece). Lithos 95, 243–66.CrossRefGoogle Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1978. Rock-forming minerals, 2A, single-chain silicates (2nd edition). Longman and Wiley.Google Scholar
Frost, B. R., Barnes, G. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Ghasemi, A. & Talbot, C. J. 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences 26, 683–93.CrossRefGoogle Scholar
Gilg, H. A., Boni, M., Balassone, G., Allen, C. R., Banks, D. & Moore, F. 2006. Marble-hosted sulfide ores in the Angouran Zn–(Pb–Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex. Mineralium Deposita 41, 116.CrossRefGoogle Scholar
Guimarães, I. P. & Da Silva Filho, A. F. 2000. Evidence of multiple sources involved in the genesis of the neoproterozoic Itapetim granitics complex, NE, Brazil, based on geochemical and isotopic data. Journal of South American Earth Sciences 13, 561–86.CrossRefGoogle Scholar
Guimarães, I. P., Da Silva Filho, A. F., Almeida, C. N., Melo, E. B., Araújo, J. M. M. & Sales, A. 1998. Sm–Nd isotope geochemistry and U/Pb zircon ages of the Brasiliano granitoids from the Pajeú–Paraíba terrain, Borborema Province, Northeastern Brazil. South American Symposium Isotope Geology 2, 300–1. Córdoba, Anais.Google Scholar
Haghipour, A. 1974. Etude geologique de la region de Biabanak-Bafq (Iran Central); petrologie et tectonique du socle Precambrien et de sa couverture. These, Universite Scientifique et Medicale de Grenoble, France, 403 pp. (published thesis).Google Scholar
Hajialioghli, R., Moazzen, M., Droop, G. T. R., Oberhänsli, R., Bousquet, R., Jahangiri, A. & Ziemann, M. 2007 a. Serpentine polymorphs and P–T evolution of meta-peridotites and serpentinites in the Takab area, NW Iran. Mineralogical Magazine 71, 155–74.CrossRefGoogle Scholar
Hajialioghli, R., Moazzen, M., Jahangiri, A., Droop, G. T. R., Bousquet, R. & Oberhänsli, R. 2007 b. Petrogenesis of meta-peridotites in the Takab area, NW Iran. Goldschmidt Conference Abstracts, Germany, A370.Google Scholar
Hall, A. 1987. Igneous Petrology. New York: John Wiley and Sons, 573 pp.Google Scholar
Hammarstrom, J. M. & Zen, E. A. 1986. Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist 71, 12971313.Google Scholar
Harris, N. B. W., Pearce, J. A. & Tindle, A. G. 1986. Geochemical characteristics of collision-zone magmatism. In Collision Tectonics (eds Coward, M. P. & Ries, A. C.), pp. 6781. Geological Society of London, Special Publication no. 19.Google Scholar
Helz, R. T. 1976. Phase relations of basalts in their melting ranges at PH2O=5 kb. Part II. Melt compositions. Journal of Petrology 17, 139–93.CrossRefGoogle Scholar
Hoffman, A. W. 1988. Chemical differentiation of the Earth. The relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters 90, 297314.CrossRefGoogle Scholar
Holland, T. & Powell, R. 1992. Plagioclase feldspars: activity-composition relations based upon Darken's quadratic formalism and Landau theory. American Mineralogist 77, 5361.Google Scholar
Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H. & Sisson, V. B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72, 231–9.Google Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Ishihara, S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology 27, 293305.Google Scholar
Jackson, D. D., Aki, K., Cornell, C. A., Dieterich, J. H., Henyey, T. L., Mahdyiar, M., Schwartz, D. & Ward, S. N. 1995. Seismic hazards in southern California: probable earthquakes, 1994–2024. Bulletin of the Seismological Society of America 85, 379439.Google Scholar
Johnson, M. C. & Rutherford, M. J. 1989. Experimental calibration of the aluminum-in hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17, 837–41.2.3.CO;2>CrossRefGoogle Scholar
Jung, S., Hoernes, S. & Mezger, K. 2002. Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia). Contributions to Mineralogy and Petrology 143, 551–66.CrossRefGoogle Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Kröner, A. & Şengör, A. M. C. 1990. Archean and Proterozoic ancestry in late Precambrian to early Paleozoic crustal elements of southern Turkey as revealed by single-zircon dating. Geology 18, 1186–90.2.3.CO;2>CrossRefGoogle Scholar
Kushiro, I. 1960. Si–Al relations in clinopyroxenes from igneous rocks. American Journal of Science 258, 548–54.CrossRefGoogle Scholar
Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresh, V. W., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist 82, 1019–37.Google Scholar
Le Bas, M. J. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science 260, 267–88.CrossRefGoogle Scholar
Le Maitre, R. W. 1976. Some problems of the projection of chemical data into mineralogical classifications. Contributions to Mineralogy and Petrology 56, 181–9.CrossRefGoogle Scholar
Leterrier, J., Maury, C. R., Thonon, P., Girard, D. & Marchal, M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters 59, 139–54.CrossRefGoogle Scholar
Liégeois, J. P. & Black, R. 1987. Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). In Alkaline Igneous Rocks (eds Fitton, J. G. & Upton, B. G. J.), pp. 381401. Geological Society of London, Special Publication no. 30.Google Scholar
Loos, S. & Reischmann, T. 1999. The evolution of the southern Menderes Massif in SW Turkey as revealed by zircon dating. Journal of Geological Society, London 156, 1021–30.CrossRefGoogle Scholar
Lotfi, M. 2001. Geological map of Iran, 1:100,000 series sheet, Takht-e-Soleiman. Tehran: Geological Survey of Iran.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.2.3.CO;2>CrossRefGoogle Scholar
Mazhari, S. A., Bea, F., Amini, S., Ghalamghash, J., Molina, J. F., Montero, P., Scarrow, J. H. & Williams, I. S. 2009. The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. Journal of the Geological Society, London 166, 5369.CrossRefGoogle Scholar
McCarthy, T. C. & Patiño Douce, A. E. 1998. Empirical calibration of the silica-Ca-tschermak's-anorthite (SCAn) geobarometer. Journal of Metamorphic Geology 16, 675–86.CrossRefGoogle Scholar
McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. P. 2003. Cenozoic evolution of Neo-tethys and implications for the causes of plate motions. Geophysical Research Letters 30, 2036.CrossRefGoogle Scholar
Middlemost, E. A. K. 1994. Naming material in the magma/igneous rock system. Earth Science Reviews 37, 215–24.CrossRefGoogle Scholar
Moazzen, M. & Droop, G. T. R. 2005. Application of mineral thermometers and barometers to granitoid igneous rocks: the Etive Complex, W Scotland. Mineralogy and Petrology 83, 2753.CrossRefGoogle Scholar
Moazzen, M. & Hajialioghli, R. 2008. Zircon SHRIMP dating of mafic migmatites from NW Iran: reporting the oldest rocks from the Iranian crust. 5th Annual Meeting AOGS, Busan, Korea SE62.Google Scholar
Moazzen, M. & Oberhänsli, R. 2008. Whole rock and relict igneous clinopyroxene geochemistry of ophiolite-related amphibolites from NW Iran – Implications for protolith nature. Neues Jahrbuch für Mineralogie 185 (1), 5162.CrossRefGoogle Scholar
Moazzen, M., Oberhänsli, R., Hajialioghli, R., Möller, A., Bousquet, R., Droop, G. T. R. & Jahangiri, A. 2009. Peak and post-peak P–T conditions and fluid composition for scapolite–clinopyroxene–garnet calc-silicate rocks from the Takab area, NW Iran. European Journal of Mineralogy 21, 149–62.CrossRefGoogle Scholar
Mohajjel, M. & Fergusson, C. 2000. Dextral transpression in Late Cretaceous continental collision zone, western Iran. Journal of Structural Geology 22, 1125–39.CrossRefGoogle Scholar
Mohajjel, M., Fergusson, C. & Sahandi, M. R. 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences 21, 397412.CrossRefGoogle Scholar
Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., Zussman, J., Aoki, K. & Gottardi, D. 1988. Nomenclature of pyroxenes. American Mineralogist 62, 5362.Google Scholar
Nagudi, B., Kobert, C. & Kurat, G. 2003. Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. Journal of African Earth Sciences 36, 7387.CrossRefGoogle Scholar
Naney, M. T. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Sciences 283, 9931033.CrossRefGoogle Scholar
Nisbet, E. G. & Pearce, A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology 63, 149–60.CrossRefGoogle Scholar
Opiyo-Akech, N., Tarney, J. & Hoshino, M. 1999. Petrology and geochemistry of granites from Archean terrain north of lake Victoria, Western Kenya. Journal of African Earth Sciences 29, 283300.CrossRefGoogle Scholar
Otten, M. T. 1984. The origin of brown hornblende in the Artfjället gabbro and dolerites. Contributions to Mineralogy and Petrology 86, 189–99.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Ramezani, J. & Tucker, R. D. 2003. The Saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Sciences 303, 622–65.CrossRefGoogle Scholar
Rapp, R. P. 1995. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. Journal of Geophysical Research 100, 15601–10.CrossRefGoogle Scholar
Rickwood, P. C. 1989. Boundary lines within petrologic diagrams, which use oxides of major and minor element. Lithos 22, 247–63.CrossRefGoogle Scholar
Rollinson, H. 1993. Using Geochemical Data: evaluation, presentation, interpretation. Longman Scientific and Technical, Essex, 352 pp.Google Scholar
Rudnick, R. L. & Fountain, D. M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33, 267309.CrossRefGoogle Scholar
Rushmer, T. 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology 107, 4159.CrossRefGoogle Scholar
Saki, A. 2010. Proto-Tethyan remnants in northwest Iran: geochemistry of the gneisses and metapelitic rocks. Gondwana Research 17 (4), 704–14.CrossRefGoogle Scholar
Saleh, G. M., Dawood, Y. H. & Abdel-Naby, H. H. 2002. Petrological and geochemical constraints on the origin of the granitoid suite of the Homert Mikpid area, south Eastern Desert, Egypt. Journal of Mineralogical and Petrological Sciences 97, 4758.CrossRefGoogle Scholar
Saunders, A. D., Tarney, J. & Weaver, S. D. 1980. Transverse variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth Planetary Science Letters 46, 344–60.CrossRefGoogle Scholar
Şengör, A. M. C. 1984. The Cimmeride orogenic system and the tectonics of Eurosia. Geological Society of America, Special Paper 195, 77 pp.Google Scholar
Şengör, A. M. C., Altiner, D., Cin, A., Ustaomer, T. & Hsu, K. J. 1988. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. In Gondwana and Tethys (eds Audley-Charles, M. G. & Hallam, A.), pp. 119–81. Geological of Society of London, Special Publication no. 37.Google Scholar
Şengör, A. M. C. & Natal'in, B. A. 1996. Paleotectonics of Asia: fragments of a synthesis. In The Tectonic Evolution of Asia (eds Yin, A. & Harrison, M.), pp. 486640. Cambridge University Press.Google Scholar
Şengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299307.CrossRefGoogle Scholar
Şengör, A. M. C., Özeren, M. S., Keskin, M., Sakinç, M., Özbakir, A. D. & Kayan, I. 2008. Eastern Turkish high plateau as a small Turkic-type orogen: implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews 90, 148.CrossRefGoogle Scholar
Stern, C. R., Huang, W. L. & Wyllie, P. J. 1975. Basalt–andesite–rhyolite–H2O: crystallization intervals with excess H2O and H2O-undersaturated liquidus surface to 35 kilobars, with implications for magma genesis. Earth and Planetary Science Letters 28, 189–96.CrossRefGoogle Scholar
Stockli, D. F., Hassanzadeh, J., Stockli, L. D., Axen, G., Walker, J. D. & Dewane, T. J. 2004. Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran. Abstracts with Programs, Geological Society of America, Denver Annual Meeting (November 7–10, 2004) 36, 319.Google Scholar
Streckeisen, A. 1974. Classification and nomenclature of plutonic rocks: recommendations of the IUGS subcommission on the systematics of igneous rocks. Geologische Rundschau. Internationale Zeitschrift für Geologie, Stuttgart 63, 773–85.CrossRefGoogle Scholar
Suda, Y. 2004. Crustal anatexis evolution of granitoid magma in Permian intra-oceanic island arc, the Asago body of the Yakuno ophiolite, Southwest Japan. Journal of Mineralogical and Petrological Sciences 99, 339–56.CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The continental crust: its composition and evolution. Oxford, England: Blackwell Scientific Publications, 312 pp.Google Scholar
Thiéblemont, D. & Tégyey, M. 1994. Une discrimination géochimique des roches différenciés témoin de la diversité d'origine et de situation tectonique des magmas calco-alcalins. Académie des Sciences, Paris 319, 8794.Google Scholar
Verdel, C., Wernicke, B. P., Ramezani, J., Hassanzadeh, J., Renne, P. R. & Spell, T. L. 2007. Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geological Society of America Bulletin 119, 961–77.CrossRefGoogle Scholar
Verhoogen, J. 1962. Distribution of titanium between silicates and oxides in igneous rocks. American Journal of Sciences 260, 211–20.CrossRefGoogle Scholar
Vyhnal, C. R., McSween, H. Y. & Speer, J. A. 1991. Hornblende chemistry in southern Appalachian granitoids: implications for aluminum in hornblende thermobarometry and magmatic epidote stability. American Mineralogist 6, 176–88.Google Scholar
Whalen, J. B. & Chappell, B. W. 1988. Opaque mineralogy and mafic mineral chemistry of I-and S-type granites of the Lachlan fold belt, southeast Australia. American Mineralogist 73, 281–96.Google Scholar
Wolf, M. B. & Wyllie, P. J. 1991. Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and applications to the segregation of magmas. Mineralogy and Petrology 44, 151–79.CrossRefGoogle Scholar
Wood, B. J. 1979. Activity-composition relationships in Ca(Mg, Fe)Si2O6–CaAl2SiO6 clinopyroxene solid solutions. American Journal of Sciences 279, 854–75.CrossRefGoogle Scholar
Wyllie, P. J. & Wolf, M. B. 1993. Amphibolite-dehydration melting: sorting out the solidus. In Magmatic processes and plate tectonics (eds Pritchard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 405–16. Geological Society of London, Special Publication no. 76.Google Scholar
Zen, E. & Hammarstrom, J. M. 1984. Magmatic epidote and its petrologic significance. Geology 12, 515–18.2.0.CO;2>CrossRefGoogle Scholar
Zen, E. & Hammarstrom, J. M. 1988. Plumbing the depths of plutons by magmatic epidote–hornblende association: A cautionary review and example from the Round Valley pluton, western Idaho. Programs, Geological Society of America 20, 475–6.Google Scholar