Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T13:11:47.119Z Has data issue: false hasContentIssue false

Patterns of extinction and recovery of phacopid trilobites during the Frasnian–Famennian (Late Devonian) mass extinction event, Canning Basin, Western Australia

Published online by Cambridge University Press:  09 September 2008

RAIMUND FEIST
Affiliation:
Laboratoire de Paléontologie, Institut des Sciences de l'Evolution, Université Montpellier II, Cc 062, Place E. Bataillon, 34095 Montpellier, France
KENNETH J. MCNAMARA*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
CATHERINE CRÔNIER
Affiliation:
Université des Sciences et Technologies de Lille 1, UMR 8157 du CNRS, Laboratoire de Paléontologie et Paléogéographie du Paléozoïque, 59655 Villeneuve d'Ascq Cedex, France
RUDY LEROSEY-AUBRIL
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
*
Author for correspondence: [email protected]

Abstract

A diverse fauna of phacopid trilobites is described from the Late Devonian (middle Frasnian to early Famennian) of the northern Canning Basin, Western Australia. One new genus and four species in two genera are described from zones 11, 13a and 13b of the middle and late Frasnian: Trimerocephaloides sinevisus gen. nov. and sp. nov., T. ? linguiformis sp. nov., Acuticryphops acuticeps (Kayser, 1889) and A. klapperi sp. nov. Late Frasnian phacopines are either blind, as shown for the first time in Trimerocephaloides sinevisus, or show trends to decreasing eye size up to the Frasnian–Famennian ‘Kellwasser’ mass extinction event. This evolutionary trend in Acuticryphops is demonstrated to have been global at this time. One new genus and six species of early Famennian phacopids are described, from the Upper triangularis, crepida and rhomboidea zones: Houseops gen. nov. with the new taxa H. canningensis sp. nov., H. beckeri sp. nov. and H. sp. A, Babinops planiventer Feist & Becker, 1997, B. minor sp. nov., Trimerocephalus tardispinosus Feist & Becker, 1997 and T. mimbi sp. nov. In contrast to European sections where exclusively blind phacopids are known in earliest Famennian sites, initial recovery following the mass extinction event in Canning peri-reefal environments is characterized by oculated forms. These trilobites must have evolved from conservative ancestors with normal eyes that had succeeded in surviving the Kellwasser biocrises in reef-related shallow water niches. Thus the origin of post-event phacopids from shallow water environments is demonstrated for the first time. Descendant lineages show increasing eye size, increased cephalic vaulting and effacement during the early Famennian.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G. K. B. 1970. Zur Augenreduktion bei devonischen Trilobiten, mit Beschreibung von Nephranops franconicus n.sp. aus dem Oberdevon Iα von Oberfranken. Paläontologische Zeitschrift 44 (3/4), 145–60.CrossRefGoogle Scholar
Barrande, J. 1846. Notice préliminaire sur le Système Silurien et les trilobites de Bohéme. Leipzig: C. L. Hirschfeld, 97 pp.Google Scholar
Becker, R. T., Feist, R., Flajs, G., House, M. R. & Klapper, G. 1989. Frasnian–Famennian extinction events in the Devonian at Coumiac, southern France. Comtes Rendus de l'Académie des Sciences Paris 309, II, 259–66.Google Scholar
Becker, R. T. & House, M. R. 1997. Sea-level changes in the Upper Devonian of the Canning Basin, Western Australia. Courier Forschungs-Institut Senckenberg 199, 129–46.Google Scholar
Becker, R. T., House, M. R., Kirchgasser, W. T. & Playford, P. E. 1991. Sedimentary and faunal changes across the Frasnian/Famennian boundary in the Canning Basin of Western Australia. Historical Biology 5, 183–96.Google Scholar
Becker, R. T. & Schreiber, G. 1994. Zur Trilobiten-Stratigraphie im Lethmather Famennium (nördliches Rheinisches Schiefergebirge. Berliner geowissenschaftliche Abhandlungen E13, 369–87.Google Scholar
Campbell, K. S. W. 1975. The functional anatomy of phacopid trilobites: musculature and eyes. Journal and Proceedings of the Royal Society of New South Wales 108, 168–88.Google Scholar
Chlupáč, I. 1966. The Upper Devonian and Lower Carboniferous trilobites of the Moravian Karst. Sborník Geologogických Ved, Paleontologie 7, 1143.Google Scholar
Chlupáč, I. 1971. New phacopid trilobites from the Devonian of Czechoslovakia. Časopis pro mineralogii a geologii 16, 255–61.Google Scholar
Chlupáč, I. 1977. The phacopid trilobites of the Silurian and Devonian of Czechoslovakia. Rozpravy Ústredniho ústravu geologickelo 43, 5142.Google Scholar
Clarkson, E. N. K. 1975. The evolution of the eye in trilobites. Fossils and Strata 4, 731.CrossRefGoogle Scholar
Crônier, C. 1999. Modalités d'évolution phylétique sous contrôle du milieu chez quelques phacopinés (trilobites) néodévoniens. Geobios 32, 187–92.Google Scholar
Crônier, C. 2003. Systematic relationships of the blind phacopine trilobite Trimerocephalus, with a new species from Causses-et-Veyran, Montagne Noire. Acta Palaeontologica Polonica 48, 5570.Google Scholar
Crônier, C. 2007. Larval morphology and ontogeny of an Upper Devonian phacopid: Nephranops from Thuringia, Germany. Journal of Paleontology 81, 684700.CrossRefGoogle Scholar
Crônier, C., Bartzsch, K., Weyer, D. & Feist, R. 1999. Larval morphology and ontogeny of a Late Devonian phacopid with reduced sight from Thuringia, Germany. Journal of Paleontology 73, 240–55.Google Scholar
Crônier, C. & Feist, R. 1997. Morphologie et évolution ontogénétique de Trimerocephalus lelievrei nov. sp., premier trilobite phacopidé aveugle du Famennien nord-Africain. Geobios 20, 161–70.CrossRefGoogle Scholar
Crônier, C. & Feist, R. 2000. Evolution et systématique du groupe Cryphops (Phacopinae, Trilobita) du Dévonien supérieur. Senckenbergiana lethaea 79, 501–15.Google Scholar
Crônier, C., Feist, R. & Auffray, J.-C. 2004. Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: a biometric and morphometric approach. Paleobiology 30, 471–81.2.0.CO;2>CrossRefGoogle Scholar
Drevermann, F. 1901. Die Fauna der oberdevonischen Tuffbreccie von Langenaubach bei Haiger. Jahrbuch der königlich-preussischen geologischen Landesanstalt und Bergakademie, Berlin 23, 554–96.Google Scholar
Feist, R. 1991. The late Devonian trilobite crises. Historical Biology 5, 197214.Google Scholar
Feist, R. 1995. Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites. In Evolutionary Change and Heterochrony (ed. McNamara, K. J.), pp. 225–44. Chichester: Wiley.Google Scholar
Feist, R. 2002. Trilobites from the latest Frasnian Kellwasser Crisis in North Africa (Mrirt, central Moroccan Meseta). Acta Palaeontologica Polonica 47, 203–10.Google Scholar
Feist, R. & Becker, R. T. 1997. Discovery of Famennian trilobites in Australia (Late Devonian, Canning Basin, NW Australia). Geobios 20, 231–42.Google Scholar
Feist, R. & McNamara, K. J. 2007. Biodiversity, distribution and patterns of extinction of the last odontopleuroid trilobites during the Devonian (Givetian, Frasnian). Geological Magazine 144, 777–96.Google Scholar
Feist, R. & Schindler, E. 1994. Trilobites during the Frasnian Kellwasser Crisis in European Late Devonian cephalopod limestones. Courier Forschungs-Institut Senkenberg 169, 195223.Google Scholar
Feist, R., Yasdi, M. & Becker, R. T. 2003. Famennian trilobites from the Shotori Range, E-Iran. Annales de la Société géologique du Nord 10 (2ème série), 285–95.Google Scholar
Fortey, R. & Owens, R. 1990. Trilobites. In Evolutionary Trends (ed. McNamara, K. J.), pp. 121–41. London: Belhaven Press.Google Scholar
George, A. D. & Chow, N. 2002. The depositional record of the Frasnian/Famennian boundary interval in a fore-reef succession, Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 347–74.Google Scholar
Girard, C., Klapper, G. & Feist, R. 2005. Subdivision of the terminal Frasnian linguiformis conodont Zone, revision of the correlative interval of Montagne Noire Zone 13, and discussion of stratigraphically significant associated trilobites. In Understanding Late Devonian and Permian–Triassic Biotic and Climatic Events: Towards an Integrated Approach (eds Over, D. J., Morrow, J. R. & Wignall, P. B.), pp. 181–98. Amsterdam: Elsevier.Google Scholar
Hahn, G. & Hahn, R. H. 1975. Die Trilobiten des Ober-Devon, Karbon und Perm. Berlin: Gebrüder Borntraeger.Google Scholar
Hawle, I. & Corda, A. J. C. 1847. Prodrom einer Monographie der böhmischen Trilobiten. Abhandlungen der Königlichen böhmischen Gesellschaft der Wissenschaften, Praha 5, 1176.Google Scholar
Holzapfel, E. 1895. Das obere Mitteldevon (Schichten mit Strinocephalus burtini und Maenioceras terebratum) im rheinischen Schiefergebirge. Abhandlungen der preussischen geologischen Landesanstalt, neue Folge 16, 1459.Google Scholar
Hoffman, A. A. & Parsons, P. A. 1991. Evolutionary Genetics and Environmental Stress. Oxford: Oxford University Press.Google Scholar
Holloway, G. J., Sibley, R. M. & Povey, S. R. 1990. Evolution in toxin-stressed environments. Functional Ecology 4, 289–94.CrossRefGoogle Scholar
Kayser, E. 1889. Ueber einige neue oder wenig gekannte Versteinerungen des rheinischen Devons. Zeitschrift der deutschen geologischen Gesellschaft 41, 288–96.Google Scholar
Klapper, G. 2007. Frasnian (Upper Devonian) conodont succession at Horse Spring and correlative sections, Canning Basin, Western Australia. Journal of Paleontology 81, 513–37.Google Scholar
Lütke, F. 1968. Trilobiten aus dem Oberdevon des Südwest-Harzes – Stratigraphie, Biotop und Systematik. Senckenbergiana lethaea 49, 119–91.Google Scholar
M'Coy, F. 1849. On the classification of some British fossil Crustacea with notices of new forms in the university collection at Cambridge. Annals and Magazine of Natural History 2, 392414.Google Scholar
McNamara, K. J. & Feist, R. 2006. New styginids from the Late Devonian of Western Australia – the last corynexochid trilobites. Journal of Paleontology 80, 981–92.CrossRefGoogle Scholar
McNamara, K. J., Feist, R. & Ebach, M. In press. Patterns of evolution and extinction in the last harpetid trilobites during the Late Devonian (Frasnian). Palaeontology 51.Google Scholar
Maksimova, Z. A. 1955. Trilobity sredvego devona Urala I severnych Mugodzar. Trudy Vsesojuz nauk-issled geological Institut (VSEGEI), Moscow 3, 224 pp.Google Scholar
Osmólska, H. 1963. On some Famennian Phacopinae (Trilobita) from the Holy Cross Mountains (Poland). Acta Palaeontologica Polonica 8, 495523.Google Scholar
Parsons, P. A. 1987. Evolutionary rates under environmental stress. Evolutionary Biology 21, 311–47.Google Scholar
Parsons, P. A. 1989. Environmental stresses and conservation of natural populations. Annual Review of Ecology and Systematics 20, 2949.Google Scholar
Parsons, P. A. 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68, 361–4.Google Scholar
Parsons, P. A. 1993 a. Stress, extinctions and evolutionary change: from living organisms to fossils. Biological Reviews 68, 313–33.CrossRefGoogle Scholar
Parsons, P. A. 1993 b. Developmental stability and the limits of adaptation: interactions with stress. Genetica 89, 245–53.Google Scholar
Perna, A. 1915. Upper Devonian Trilobites from the environs of the town Vierkhnie-Uralsk. Mémoires du Comité géologique, Nouvelle série 138, 158.Google Scholar
Playford, P. E. 1980. Devonian “Great Barrier Reef” of the Canning Basin, Western Australia. American Association of Petroleum Geologists 64, 814–40.Google Scholar
Playford, P. E. 1981. Devonian reef complexes of the Canning Basin, Western Australia. Geological Society of Australia. Fifth Australian Geological Convention Field Excursion Guidebook. Sydney, 64 pp.Google Scholar
Playford, P. E. 1984. Platform-margin and marginal-slope relationships in Devonian reef complexes of the Canning Basin. In The Canning Basin (ed. Purcell, P. G.), pp. 189–213. Proceedings GSA/PESA Canning Basin Symposium, Perth.Google Scholar
Playford, P. E. & Lowry, D. C. 1966. Devonian reef complexes of the Canning Basin, Western Australia. Geological Survey of Western Australia Bulletin 118, 1150.Google Scholar
Richter, R. 1856. Beitrag zur Paläontologie des Thüringer Waldes. Erster Theil. Denkschrift der Kaiserlichen Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Classe, Wien 11, 87138.Google Scholar
Richter, R. 1922. Über einen Fall äusserster Rückbildung des schizochroalen Trilobiten-Auges. Centralblatt für Mineralogie, pp. 344–52.Google Scholar
Richter, R. & Richter, E. 1923. Ueber Phacopidella Reed. Senckenbergiana 5, 134–43.Google Scholar
Richter, R. & Richter, E. 1925. Unterlagen zum Fossilium Catalogus, Trilobitae III. Senckenbergiana 7, 239–44.Google Scholar
Richter, R. & Richter, E. 1926. Beiträge zur Kenntnis devonischer Trilobiten. IV. Die Trilobiten des Oberdevon. Abhandlungen der preussischen geologischen Landesanstalt, neue Folge 99, 1314.Google Scholar
Richter, R. & Richter, E. 1931. Unterlagen zum Fossilium Catalogus, Trilobitae. V. Senckenbergiana 13, 140–6.Google Scholar
Roemer, F. A. 1866. Geognostische Beobachtungen im Polnischen Mittelgebirge. Zeitschrift der Deutschen Geologischen Gesellschaft 18, 667–90.Google Scholar
Salter, J. W. 1864. A monograph of the British trilobites from the Cambrian, Silurian and Devonian formations. Palaeontographical Society (Monograph).Google Scholar
Struve, W. 1959. Beitrage zur Kenntnis der Phacopina (Trilobita). 4: Volkops volki n.g., n.sp., ein Phacopinae aus dem deutschen Ordovizium. Senckenbergiana lethaea 40, 2945.Google Scholar
Weyer, D., Girard, C. & Feist, R. 2003. Conodonta, Trilobita, and Anthozoa near the Late Frasnian Upper Kellwasser Event of the Geipel Quarry section in Schleiz, Thuringian Mountains (Germany). Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe 6, 71–8.Google Scholar
Wood, R. 2004. Palaeoecology of a post-extinction reef: Famennian (Late Devonian) of the Canning Basin, north-western Australia. Palaeontology 47, 415–45.Google Scholar