Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T07:07:45.185Z Has data issue: false hasContentIssue false

Palaeoproterozoic metasedimentary rocks of the Ji'an Group and their significance for the tectonic evolution of the northern segment of the Jiao–Liao–Ji Belt, North China Craton

Published online by Cambridge University Press:  24 July 2017

EN MENG*
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. China
CHAO-YANG WANG
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. China
ZHUANG LI
Affiliation:
The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
YAN-GUANG LI
Affiliation:
Xi'an Centre of Geological Survey, China Geological Survey, Xi'an 710054, China
HONG YANG
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. China
JIA CAI
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. China
LEI JI
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. China
MENG-QI JIN
Affiliation:
Xi'an Centre of Geological Survey, China Geological Survey, Xi'an 710054, China
*
Author for correspondence: [email protected]

Abstract

In this paper we present new petrological and whole-rock geochemical data for the Palaeoproterozoic metasedimentary rocks in the upper part of the Ji'an Group within the Jiao–Liao–Ji Belt, China, as well as zircon U–Pb age dates and in situ Lu–Hf isotope data. The new data improve our understanding of the original nature of the metasedimentary rocks, further providing insights into their tectonic setting and the evolutionary history of the northern segment of the Jiao–Liao–Ji Belt. The zircons can be divided into two groups, viz., one of magmatic origin and the other of metamorphic origin. Zircon U–Pb dating gave mean or statistical peak ages for the magmatic zircons at 2035, 2082, 2178, 2343–2421, 2451–2545, 2643–2814 and 2923–3446 Ma, and mean peak ages for the metamorphic zircons at 1855 and 1912 Ma, which indicate a maximum depositional age of 2.03 Ga and two-stage metamorphic events at c. 1.91 and 1.85 Ga for the metasedimentary rocks. Geochemical data show that (1) the protoliths of these rocks were mainly sandstones, greywackes and claystones, together with some shales; (2) the main sources of the sedimentary material were Palaeoproterozoic granites and acid volcanic rocks, with minor contributions from Archaean granitic rocks; and (3) the sediments were deposited in an active continental margin setting. Moreover, along the northeastern margin of the Eastern Block of the North China Craton there is evidence of ancient crustal materials as old as 3.76 Ga, and multiple crustal growth events at 3.23–3.05, 2.80–2.65, 2.54–2.45 and 2.28–2.08 Ga.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Bai, J. 1993. The Precambrian Geology and Pb–Zn Mineralization in the Northern Margin of North China Platform. Beijing: Geological Publishing House, pp. 4789 (in Chinese with English abstract).Google Scholar
Bai, J. & Dai, F. Y. 1998. Archean crust of China. In Precambrian Crustal Evolution of China (eds Ma, X. Y. & Bai, J.), pp. 1586. Beijing: Geological Publishing House.Google Scholar
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–22.Google Scholar
Bhatia, M. R. & Crook, A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.Google Scholar
Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.Google Scholar
Chen, B., Li, Z., Wang, J. L., Zhang, L. & Yan, X. L. 2016. Liaodong Peninsula ~2.2 Ga magmatic event and its geological significance. Journal of Jilin University (Earth Science Edition) 46 (2), 303–20 (in Chinese with English abstract).Google Scholar
Chen, R. D., Li, X. D. & Zhang, F. S. 2003. Several problems about the Paleoproterozoic geology of eastern Liaoning. Geology of China 30, 207–13 (in Chinese with English abstract).Google Scholar
Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G. & Burton, K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.Google Scholar
Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104, 137.Google Scholar
Cox, R., Lowe, D. R. & Cullers, R. L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta 59, 2919–40.Google Scholar
Cullers, R. L. 1994a. The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, Colorado, USA. Chemical Geology 113, 327–43.Google Scholar
Cullers, R. L. 1994b. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta 58, 4955–72.Google Scholar
Cullers, R. L. 2000. The geochemistry of shales, siltstones, and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181203.Google Scholar
Dong, C. Y., Ma, M. Z., Liu, S. J., Xie, H. Q., Liu, D. Y., Li, X. M. & Wan, Y. S. 2012. Middle Paleoproterozoic crustal extensional regime in the North China Craton: new evidence from SHRIMP zircon U–Pb dating and whole-rock geochemistry of meta-gabbro in the Anshan–Gongchangling area. Acta Petrologica Sinica 28, 2785–92.Google Scholar
Du, L. L., Yang, C. H., Zhuang, Y. X., Wei, R. Z., Wan, Y. S., Ren, L. D. & Hou, K. J. 2010. Hf isotopic compositions of zircons from 2.7 Ga metasedimentary rocks and biotite plagioclase gneiss in the Mengjiatun formation complex, western Shandong Province. Acta Geologica Sinica 84, 9911001 (in Chinese with English abstract).Google Scholar
Du, L. L., Zhuang, Y. X., Yang, C. H., Wan, Y. S., Wang, X. S., Wang, S. J. & Zhang, L. F. 2003. Characters of zircons in the Mengjiazhuang Formation in Xintai of Shandong and their chronological significance. Acta Geologica Sinica 77, 359–66 (in Chinese with English abstract).Google Scholar
Dubińska, E., Bylina, P. & Kozłowski, A. 2004. U–Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology 203, 183203.Google Scholar
Elhlou, S., Belousova, E., Griffin, W. L., Pearson, N. J. & O'Reilly, S. Y. 2006. Trace element and isotopic composition of GJ–red zircon standard by laser ablation. Geochimica et Cosmochimica Acta 70 (Suppl.), A158.Google Scholar
Faure, M., Lin, W., Moni, P. & Bruguier, O. 2004. Paleoproterozoic arc magmatism and collision in Liaodong Peninsula, NE China. Terra Nova 16, 7580.Google Scholar
Fedo, C. M., Eriksson, K. A. & Krogstad, E. J. 1996. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta 60, 1751–63.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.Google Scholar
Floyd, P. A. & Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, London 144, 531–42.Google Scholar
Geng, Y. S., Shen, Q. H. & Ren, L. D. 2010. Late Neoarchean to early Paleoproterozoic magmatic events and tectonothermal system in the North China Craton. Acta Petrologica Sinica 26, 1945–66 (in Chinese with English abstract).Google Scholar
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgam Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E. A., Jackson, S. E., van Achterbergh, E. & O'Reilly, S. Y. 2000. The Hf isotope composition of cratonic mantle: LA–MC–ICP MS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.Google Scholar
Gromet, L. P., Dymek, R. F. & Haskin, L. A. 1984. The North American Hale Composite: its composition, major and trace element characteristics. Geochimica et Cosmochimica Acta 48, 2469–82.Google Scholar
Gruau, G., Rosing, M., Bridgwater, D. & Gill, R. C. O. 1996. Resetting of Sm–Nd systematics during metamorphism of >3.7 Ga rocks: implications for isotopic models of early Earth differentiation. Chemical Geology 133, 225–40.Google Scholar
Guan, H., Sun, M., Wilde, S. A., Zhou, X. & Zhai, M. G. 2002. SHRIMP U–Pb zircon geochronology of the Fuping complex: implications for formation and assembly of the North China craton. Precambrian Research 113, 118.Google Scholar
Guo, S. S. & Li, S. G. 2009. SHRIMP zircon U–Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton. Science in China Series D – Earth Sciences 39, 694–9.Google Scholar
Hao, D. F., Li, S. Z., Zhao, G. C., Sun, M., Han, Z. Z. & Zhao, G. T. 2004. Origin and its constraint to tectonic evolution of Paleoproterozoic granitoids in the eastern Liaoning and Jilin province, North China. Acta Petrologica Sinica 20, 1409–16 (in Chinese with English abstract).Google Scholar
Harnois, L. 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology 55, 319–22.Google Scholar
He, G. P. & Ye, H. W. 1998a. Compositions and main characteristics of Early Proterozoic metamorphic terrains in the eastern Liaoning and the southern Jilin areas. Journal of Changchun University Science and Technology 28, 121–6 (in Chinese with English abstract).Google Scholar
He, G. P. & Ye, H. W. 1998b. Two types of Early Proterozoic metamorphism in the Eastern Liaoning and Southern Jilin provinces and their tectonic implications. Acta Petrologica Sinica 14, 152–62 (in Chinese with English abstract).Google Scholar
Herron, M. M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58, 820–9.Google Scholar
Hofmann, A. W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297314.Google Scholar
Hoskin, P. W. O. & Ireland, T. R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28, 627–30.Google Scholar
Hou, K. J., Li, Y. H., Zou, T. R., Qu, X. M., Shi, Y. R. & Xie, G. Q. 2007. Laser ablation-MC-ICPMS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica 23, 2595–604 (in Chinese with English abstract).Google Scholar
Hu, G. W. 1992. The basic structural characteristics of the early Proterozoic Liaohe Group. Bulletin of the Tianjin Institute of Geology and Mineral Resources 26–27, 179–88 (in Chinese with English abstract).Google Scholar
Iizuka, T. & Hirata, T. 2005. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation–MC–ICPMS technique. Chemical Geology 220, 121–37.Google Scholar
Jahn, B. M., Liu, D. Y., Wan, Y. S., Song, B. & Wu, J. S. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science 308, 232–69.Google Scholar
JBGMR (Jilin Bureau of Geology and Mineral Resources). 1991. Regional Geology of Jilin Province. Beijing: Geological Publishing House (in Chinese).Google Scholar
Jiang, C. C. 1987. Precambrian Geology of Eastern Part of Liaoning and Jilin. Shenyang: Liaoning Science and Technology Publishing House, pp. 1036 (in Chinese).Google Scholar
Kinny, P. D., Compston, W. & Williams, I. S. 1991. A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochimica et Cosmochimica Acta 55, 849–59.Google Scholar
Kinny, P. D. & Maas, R. 2003. Lu–Hf and Sm–Nd isotope systems in Zircon. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 327–41. Reviews in Mineralogy and Geochemistry 53.Google Scholar
Kröner, A., Wilde, S. A., Li, J. H. & Wang, K. Y. 2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences 24, 577–95.Google Scholar
Lahtinen, R., Huhma, H., Kontinen, A., Kohonen, J. & Sorjonen-Ward, P. 2010. New constraints for the source characteristics, deposition and age of the 2.1–1.9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Research 176, 7793.Google Scholar
LBGMR (Liaoning Bureau of Geology and Mineral Resources). 1989. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House, 6324 (in Chinese).Google Scholar
Li, Z. & Chen, B. 2014. Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao–Liao–Ji Belt, North China Craton: implications for petrogenesis and tectonic setting. Precambrian Research 255, 653–67.Google Scholar
Li, Z., Chen, B., Liu, J. W., Zhang, L. & Yang, C. 2015. Zircon U–Pb ages and their implications for the South Liaohe Group in the Liaodong Peninsula, Northeast China. Acta Petrologica Sinica 31, 1589–605 (in Chinese with English abstract).Google Scholar
Li, S. Z., Han, Z. Z., Liu, Y. J., Yang, Z. S. & Ma, R. 2001. Continental dynamics and regional metamorphism in the Liaohe Group. Geology Review 47, 918 (in Chinese with English abstract).Google Scholar
Li, S. Z., Hao, D., Han, Z. & Zhao, G. 2003. Paleoproterozoic deep processes and tectono-thermal evolution in Jiao-Liao Massif. Acta Geological Sinica 77, 328–40.Google Scholar
Li, S. Z. & Yang, Z. S. 1997. Types and genesis of Palaeoproterozoic granites in the Jiao–Liao Massif. Northwest Geological 43, 21–7 (in Chinese with English abstract).Google Scholar
Li, S. Z., Yang, Z. S. & Liu, Y. J. 1996. Preliminary analysis on layered gravitational sliding structure of the Palaeoproterozoic orogenic belt in Liaodong Peninsula. Journal of Changchun University Earth Science Edition 26, 305–9 (in Chinese with English abstract).Google Scholar
Li, S. Z., Yang, Z. S., Liu, Y. J. & Liu, J. L. 1997. Emplacement model of Palaeoproterozoic early-granite in the Jiao–Liao–Ji area and its relation to layered gravitational sliding structure. Acta Petrologica Sinica 13, 189202 (in Chinese with English abstract).Google Scholar
Li, S. Z. & Zhao, G. C. 2007. SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research 158, 116.Google Scholar
Li, S. Z., Zhao, G. C., Liu, X., Dai, L. M., Suo, Y. H., Song, M. C. & Wang, P. C. 2012. Structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research 200, 5973.Google Scholar
Li, S. Z., Zhao, G. C., Santosh, M., Liu, X. & Dai, L. M. 2011. Palaeoproterozoic tectono-thermal evolution and deep crustal processes in the Jiao-Liao-Ji Belt, North China craton: a review. Geological Journal 46, 525–43.Google Scholar
Li, S. Z., Zhao, G. C., Sun, M., Han, Z. Z., Hao, D. F., Luo, Y. & Xia, X. P. 2005. Deformation history of the Paleoproterozoic Liaohe Group in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences 24, 659–74.Google Scholar
Li, S. Z., Zhao, G. C., Sun, M., Han, Z. Z., Zhao, G. T. & Hao, D. F. 2006. Are the South and North Liaohe Groups different exotic terranes?–Nd isotope constraints on the Jiao–Liao–Ji orogen. Gondwana Research 9, 198208.Google Scholar
Li, S. Z., Zhao, G. C., Sun, M., Liu, J. Z., Hao, D. F., Han, Z. Z., Luo, Y. & Yang, Z. Z. 2004. Not all the Liaoji Granitoids are Paleoproterozoic: evidence from SHRIMP U–Pb zircon ages. International Geology Review 46, 162–76.Google Scholar
Liao, X., Zhang, X. H., Jin, S. X., Piao, X. & Zheng, Z. S. 2016. Detrital zircon U–Pb ages of the Machollyong Group in Korean Peninsula: regional correlation and tectonic implications. Acta Petrologica Sinica 32, 2981–92 (in Chinese with English abstract).Google Scholar
Liu, J. Y., Chen, H., Sha, D. & Wang, H. 1997. The inner zone of the Liaoji Paleorift: its early structural styles and structural evolution. Journal of Asian Earth Science 15, 1931.Google Scholar
Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C. & Chen, H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.Google Scholar
Liu, Y. J. & Li, S. Z. 1996. Palaeoproterozoic granite in the area from Haicheng City, via Dashiqiao City to Jidong Town. Liaoning Geology 1, 10–8 (in Chinese with English abstract).Google Scholar
Liu, F. L., Liu, P. H., Wang, F., Liu, C. H. & Cai, J. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sinica 31, 2816–46 (in Chinese with English abstract).Google Scholar
Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S. & Shen, Q. H. 1992. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–42.Google Scholar
Liu, D. Y., Wan, Y. S. & Wu, J. S. 2007. Eoarchean rocks and zircons in the North China Craton. In Earth's Oldest Rocks (eds Van Kranendonk, M. J., Smithies, R. H. & Bennett, V.), pp. 251–73. Amsterdam: Elsevier.Google Scholar
Liu, Y. C. & Wang, A. D. 2012. Episodic growth and multiple modification of Precambrian lower crust in the southeastern margin of North China Craton: petrologic, geochronological and Hf–isotopic evidences. Journal of Earth Sciences and Environment 34, 111 (in Chinese with English abstract).Google Scholar
Liu, Y. C., Wang, A. D., Rolfo, F., Groppo, C., Gu, X. F. & Song, B. 2009. Geochronological and petrological constraints on Palaeoproterozoic granulite facies metamorphism in southeastern margin of the North China Craton. Journal of Metamorphic Geology 27 (2), 125–38.Google Scholar
Liu, S. W., Zhao, G. C., Wilde, S. A., Shu, G. M., Sun, M., Li, Q. G., Tian, W. & Zhang, J. 2006. Th–U–Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Research 148, 205–25.Google Scholar
Long, X., Sun, M., Yuan, C., Xiao, W. & Cai, K. 2008. Early Paleozoic sedimentary record of the Chinese Altai: implications for its tectonic evolution. Sedimentary Geological 208, 88100.Google Scholar
Lu, L. Z. 1996. The Precambrian metamorphic geology and tectonic evolution of the Jiao–Liao massif. Journal of Changchun University Earth Science 26, 2532 (in Chinese with English abstract).Google Scholar
Lu, X. P., Wu, F. Y., Guo, J. H., Wilde, S. A., Yang, J. H., Liu, X. M. & Zhang, X. O. 2006. Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research 146, 138–64.Google Scholar
Lu, X. P., Wu, F. Y., Guo, J. H. & Yin, C. J. 2005. Late Paleoproterozoic granitic magmatism and crustal evolution in Tonghua region, northeast China. Acta Petrologica Sinica 21, 721–36 (in Chinese with English abstract).Google Scholar
Lu, X. P., Wu, F. Y., Lin, J. Q., Sun, D. Y., Zhang, Y. B. & Guo, C. L. 2004 a. Geochronological successions of the Early Precambrian granitic magmatism in southern Liaoning Peninsula and its constraints on tectonic evolution of the North China Craton. Chinese Journal of Geology 39, 123–39 (in Chinese with English abstract).Google Scholar
Lu, X. P., Wu, F. Y., Zhang, Y. B., Zhao, C. B. & Guo, C. L. 2004b. Emplacement age and tectonic setting of the Paleoproterozoic Liaoji granites in Tonghua area, southern Jilin province. Acta Petrologica Sinica 20, 381–92 (in Chinese with English abstract).Google Scholar
Lu, S. N., Zhao, G. C., Wang, H. C. & Hao, G. J. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: review. Precambrian Research 160, 7793.Google Scholar
Ludwig, K. R. 2003. ISOPLOT 3: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication 4, 74 pp.Google Scholar
Luo, Y., Sun, M., Zhao, G. C., Li, S. Z., Ayers, J. C., Xia, X. & Zhang, J. 2008. A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: constraints on the evolution of the Jiao–Liao–Ji Belt, North China Craton. Precambrian Research 163, 279306.Google Scholar
Luo, Y., Sun, M., Zhao, G. C., Li, S. Z., Xu, P., Ye, K. & Xia, X. 2004. LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research 134, 349–71.Google Scholar
McLennan, S. M., Hemming, S., McDaniel, D. K. & Hannson, G. N. 1993. Geochemical approaches to sedimentation, provenance and tectonics. In Processes Controlling the Composition of Clastic Sediments (eds Johnsson, M. J. & Basu, A.), pp. 21–40. Geological Society of America Special Paper no. 284.Google Scholar
McLennan, S. M., Taylor, S. R. & McCulloch, M. T. 1990. Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crystal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta 54, 2015–50.Google Scholar
Meng, E., Liu, F. L., Cai, J. & Cui, Y. 2013a. Zircon U–Pb and Lu–Hf isotopic and whole-rock geochemical constraints on the protolith and tectonic history of the Changhai metamorphic supracrustal sequence in the Jiao–Liao–Ji Belt, southeast Liaoning Province, northeast China. Precambrian Research 233, 297315.Google Scholar
Meng, E., Liu, F. L., Cui, Y., Liu, P. H., Liu, C. H. & Shi, J. R. 2013b. Depositional ages and tectonic implications for the Kuandian South Liaohe Group in northeast Liaodong Peninsula, northeast China. Acta Petrologica Sinica 29, 2465–80 (in Chinese with English abstract).Google Scholar
Meng, E., Liu, F. L., Liu, J. H., Cui, Y., Yang, H., Shi, J. R., Kong, Q. B. & Lian, T. 2013c. Zircon U–Pb and Lu–Hf isotopic constraints on Archean crustal evolution in the Liaonan Block of northeast China. Lithos 177, 164–83.Google Scholar
Meng, E., Liu, F. L., Liu, P. H., Liu, C. H. & Yang, H. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China: evidence from zircon U–Pb dating and in situ Lu–Hf isotopes, and whole-rock geochemistry. Precambrian Research 247, 92109.Google Scholar
Meng, E., Wang, C. Y., Liu, F. L., Yang, H., Cai, J., Ji, L. & Li, Y. G. In press. Zircon U–Pb–Hf isotopic and whole-rock geochemical studies of Paleoproterozoic metasedimentary rocks of the northern segment of the Jiao–Liao–Ji Belt, China: implications for provenance and regional tectonic evolution. Precambrian Research.Google Scholar
Meng, E., Wang, C. Y., Yang, H., Cai, J., Ji, L. & Li, Y. G. 2017. Paleoproterozoic metavolcanic rocks in the Ji'an Group and constraints on the formation and evolution of the northern segment of the Jiao-Liao-Ji Belt, China. Precambrian Research 294, 133–50.Google Scholar
Moorbath, S. & Kamber, B. S. 1998. A reassessment of the timing of early Archaean crustal evolution in West Greenland. Geological Survey of Denmark and Greenland Bulletin 180, 8893.Google Scholar
Murray, R. W., Buchholtz ten Brink, M. R., Jones, D. L., Gerlach, D. C. & Russ, G. P. III. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology 18, 268–71.Google Scholar
Nesbitt, H. & Young, G. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–7.Google Scholar
Nesbitt, H. W. & Young, G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Cosmochimica Acta 48, 1523–34.Google Scholar
Nutman, A. P., Wan, Y. S., Du, L. L., Friend, C. R. L., Dong, C. Y., Xie, H. Q., Wang, W., Sun, H. Y. & Liu, D. Y. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research 189, 4365.Google Scholar
Pearce, J. A., Ernewein, M. & Bloomer, S. H. 1995. Geochemistry of Lau Basin volcanic rocks. In Volcanism Associated with Extension at Consuming Plate Margins (ed. Smellie, J. L.), pp. 5375. Geological Society of London, Special Publication no. 81.Google Scholar
Peng, Q. M. & Palmer, M. R. 1995. The Palaeoproterozoic boron deposits in eastern Liaoning, China–a metamorphosed evaporite. Precambrian Research 72, 185–97.Google Scholar
Peng, Q. M. & Xu, H. 1994. The Palaeoproterozoic Metaevaporitic Sequence and Boron Deposits in Eastern Liaoning and Southern Jilin. Changchun: Northeast Normal University Press, pp. 6097 (in Chinese with English abstract).Google Scholar
Roser, B. P., Cooper, R. A., Nathan, S. & Tulloch, A. J. 1996. Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics 39, 116.Google Scholar
Roser, B. P. & Korsch, R. J. 1986. Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology 94, 635–50.Google Scholar
Rudnick, R. & Gao, S. 2003. Composition of the continental crust. Treatise on Geochemistry 3, 164.Google Scholar
Santosh, M. 2010. Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction. Precambrian Research 178, 149–67.Google Scholar
Santosh, M., Sajeev, K. & Li, J. H. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: evidence from North China Craton. Gondwana Research 10, 256–66.Google Scholar
Santosh, M., Sajeev, K., Li, J. H., Liu, S. J. & Itaya, T. 2009a. Counterclockwise exhumation of a hot orogen: the Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos 110, 140–52.Google Scholar
Santosh, M., Tsunogae, T., Li, J. H. & Liu, S. J. 2007. Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research 11, 263–85.Google Scholar
Santosh, M., Wan, Y., Liu, D., Chunyan, D. & Li, J. 2009b. Anatomy of zircons from an ultrahot orogen: the amalgamation of North China Craton within the supercontinent Columbia. Journal of Geology 117, 429–43.Google Scholar
Santosh, M., Wilde, S. A. & Li, J. H. 2007. Timing of Paleoproterozoic ultrahigh temperature metamorphism in the North China Craton: evidence from SHRIMP U–Pb zircon geochronology. Precambrian Research 159, 178–96.Google Scholar
Scherer, E., Münker, C. & Mezger, K. 2001. Calibration of the lutetium–hafnium clock. Science 293, 683–7.CrossRefGoogle ScholarPubMed
Shen, Q. H., Geng, Y. S., Song, B. & Wan, Y. S. 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze Blocks, and Qinling–Dabie Orogenic Belt. Acta Geologica Sinica 79, 616–27 (in Chinese with English abstract).Google Scholar
Simonen, A. 1953. Stratigraphy and sedimentation of the Svecofennidic, early Archean supracrustal rocks in southwestern Finland. Bulletin of the Geological Society of Finland 160, 164.Google Scholar
Song, S., Niu, Y., Wei, C., Ji, J. & Su, L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent—an eastern extension of the Lhasa Block. Lithos 120, 327–46.Google Scholar
Song, B., Nutman, A. P., Liu, D. Y. & Wu, J. S. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning province, northeastern China. Precambrian Research 78, 7994.Google Scholar
Sun, M., Armstrong, R. L., Lambert, R. S., Jiang, C. C. & Wu, J. H. 1993. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of Palaeoproterozoic Kundian Complex in the eastern Liaoning province, China. Precambrian Research 62, 171–90.Google Scholar
Sun, J. G., Lin, Q. & Ge, W. C. 1992. The deformation of the Archean tonalite bodies in Jinzhou areas, Liaoning Province and the tectonic environment of emplacement. Jilin Geologica 04, 48–9 (in Chinese with English abstract).Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (eds Saunders, A. D. & Norry, M. J), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Sun, J. F., Yang, J. H., Wu, F. Y. & Wilde, S. A. 2012. Precambrian crustal evolution of the eastern North China Craton as revealed by U–Pb ages and Hf isotopes of detrital zircons from the Proterozoic Jing'eryu Formation. Precambrian Research 200–203, 184208.Google Scholar
Tam, P. Y., Zhao, G. C., Liu, F. L., Zhou, X. W., Sun, M. & Li, S. Z. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: new SHRIMP U–Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research 19, 150–62.Google Scholar
Tam, P. Y., Zhao, G. C., Sun, M., Li, S. Z., Wu, M. & Yin, C. 2012. Petrology and metamorphic P–T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. International Geological Congress 155, 94109.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
Tomaschek, F., Kennedy, A. K., Villa, I. M., Lagos, M. & Ballhaus, C. 2003. Zircons from Syros, Cyclades, Greece–recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology 44, 19772002.Google Scholar
Wan, Y. S., Dong, C. Y., Wang, W., Xie, H. Q. & Liu, D. Y. 2010. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China Craton: evidence from Sensitive High Resolution Ion Micro-Probe U–Pb zircon geochronology. Acta Geologica Sinica 84, 91104 (in Chinese with English abstract).Google Scholar
Wan, Y. S., Liu, D. Y., Song, B., Wu, J. S., Yang, C. H., Zhang, Z. Q. & Geng, Y. S. 2005. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Science 24, 563–75.Google Scholar
Wan, Y. S., Song, B., Liu, D. Y., Li, H. M., Yang, C., Zhang, Q. D., Yang, C. H., Geng, Y. S. & Shen, Q. H. 2001. Geochronology of 3.8 to 2.5 Ga ancient rock belt in the Dongshan scenic park, Anshan area. Acta Geologica Sinica 75, 363–70 (in Chinese with English abstract).Google Scholar
Wan, Y. S., Song, B., Liu, D. Y., Wilde, S. A., Wu, J., Shi, Y., Yin, X. & Zhou, H. 2006. SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research 149, 249–71.Google Scholar
Wang, Z. H. 2009. Tectonic evolution of the Hengshan–Wutai–Fuping complexes and its implication for the Trans–North China Orogen. Precambrian Research 170, 7387.Google Scholar
Wang, H. C., Lu, S. N., Chu, H., Xiang, Z. Q., Zhang, C. J. & Liu, H. 2011. Zircon U–Pb age and tectonic setting of meta-basalts of Liaohe Group in Helan Area, Liaoyang, Liaoning Province. Journal of Jilin University (Earth Science Edition) 41, 1321–34 (in Chinese with English abstract).Google Scholar
Wang, A. D., Liu, Y. C., Santosh, M. & Gu, X. F. 2013. Zircon U–Pb geochronology, geochemistry and Sr–Nd–Pb isotopes from the metamorphic basement in the Wuhe Complex: implications for Neoarchean active continental margin along the southeastern North China Craton and constraints on the petrogenesis of Mesozoic granitoids. Geoscience Frontiers 4 (1), 5771.Google Scholar
Wang, H. C., Ren, Y. W., Lu, S. N., Kang, J. L., Chu, H., Yu, H. B. & Zhang, C. J. 2015. Stratigraphic units and tectonic setting of the Paleoproterozoic Liao-Ji Orogen. Acta GeoScience Sinica 36, 583–98 (in Chinese with English abstract).Google Scholar
Wilde, S. A. & Zhao, G. C. 2005. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Sciences 24, 519–22.Google Scholar
Wilde, S. A., Zhao, G. C. & Sun, M. 2002. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research 5, 8594.Google Scholar
Wu, J. S., Geng, Y. S., Shen, Q. H., Wan, Y. S., Liu, D. Y. & Song, B. 1998. Archean Geological Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Beijing: Geological Publishing House, 16104 (in Chinese).Google Scholar
Wu, F. Y., Li, Q. L., Yang, Z. H., Jin, S. N. & Han, L. Y. 2016.Crustal growth and evolution of the Rangrim Massif, northern Korean Peninsula. Acta Petrologica Sinica 32, 2933–47 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Li, X. H., Zheng, Y. F. & Gao, S. 2007. Lu–Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica 23 (2), 185220 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Yang, Y. H. & Xie, L. W. 2006. Hf isotopic compositions of standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 231, 105–26.Google Scholar
Wu, F. Y., Zhang, Y. B., Yang, J. H., Xie, L. W. & Yang, Y. H. 2008. Zircon U–Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research 167, 339–62.Google Scholar
Wu, M. L., Zhao, G. C., Sun, M., Yin, C. Q., Li, S. Z. & Tam, P. Y. 2012. Petrology and P–T path of the Yishui mafic granulites: implications for tectonothermal evolution of the Western Shandong Complex in the Eastern Block of the North China Craton. Precambrian Research 222–223, 312–24.Google Scholar
Wu, F. Y., Zhao, G. C., Wilde, S. A. & Sun, D. Y. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences 24, 523–45.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C. & Luo, Y. 2006a. LA–ICP–MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research 144, 199212.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y. & Xie, L. W. 2009. U–Pb and Hf isotopic study of detrital zircons from the Luliang khondalite, North China Craton, and their tectonic implications. Geological Magazine 146, 701–16.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y., Xu, P. & Zhang, J. S. 2008. Paleoproterozoic crustal growth events in the Western Block of the North China Craton: evidence from detrital zircon Hf and whole rock Sr–Nd isotopes of the khondalites in the Jining Complex. American Journal of Science 308, 304–27.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y., Xu, P., Zhang, J. H. & Luo, Y. 2006b. U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: constraints on the evolution of the Ordos Terrane, western block of the North China Craton. Earth and Planetary Science Letters 241, 581–93.Google Scholar
Yang, M. C., Chen, B. & Yan, C. 2015. Petrogenesis of Paleoproterozoic gneissic granites from Jiao-Liao-Ji belt of North China Craton and their tectonic implications. Journal of Earth Science and Environment 37, 3151 (in Chinese with English abstract).Google Scholar
Yang, Z. S., Li, S. Z., Liu, Y. J. & Liu, J. L. 1995. Uplifting bedding delamination structures in continental Orogen–a new model of pre-orogenic extensional tectonics. Journal of Changchun University Earth Science Edition 25, 361–7 (in Chinese with English abstract).Google Scholar
Yang, J. H., Wu, F. Y., Xie, L. W. & Liu, X. M. 2007. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, east North China Craton: constraints from in-situ zircon U–Pb ages and Hf isotopes. Acta Petrologica Sinica 23, 263–76 (in Chinese with English abstract).Google Scholar
Yin, C. Q., Zhao, G. C., Guo, J. H., Sun, M., Xia, X. P., Zhou, X. W. & Liu, C. H. 2011. U–Pb and Hf isotopic study of zircons of the Helanshan Complex: constraints on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos 122, 2538.Google Scholar
Yin, C. Q., Zhao, G. C., Sun, M., Xia, X. P., Wei, C. J., Zhou, X. W. & Leung, W. H. 2009. LA–ICP–MS U–Pb zircon ages of the Qianlishan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research 174, 7894.Google Scholar
Yin, C. Q., Zhao, G. C., Wei, C. J., Sun, M., Guo, J. H. & Zhou, X. W. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research 242, 172–86.Google Scholar
Zeng, L. S., Gao, L. E., Xie, K. J. & Zeng, J. L. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: melting thickened lower continental crust. Earth and Planetary Science Letters 303, 251–66.Google Scholar
Zhai, M. G., Bian, A. G. & Zhao, T. P. 2000. The amalgamation of the supercontinent of North China Craton at the end of NeoArchaean and its breakup during late Paleoproterozoic and MesoProterozoic. Science in China (Series D) 43, 219–32.Google Scholar
Zhai, M. G., Guo, J. H. & Liu, W. J. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. Journal of Asian Earth Science 24, 547–61.Google Scholar
Zhai, M. G., Li, T. S., Peng, P., Hu, B., Liu, F., Zhang, Y. B. & Guo, J. H. 2010. Precambrian key tectonic events and evolution of the North China Craton. In The Evolving Continents (eds Kusky, T. M., Zhai, M. G. & Xiao, W. J.), pp. 235–62. Geological Society of London, Special Publication no. 338.Google Scholar
Zhai, M. G. & Peng, P. 2007. Paleoproterozoic events in North China Craton. Acta Petrologica Sinica 23, 2665–87 (in Chinese with English abstract).Google Scholar
Zhai, M. G. & Santosh, M. 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research 20, 625.Google Scholar
Zhai, M. G. & Santosh, M. 2013. Metallogeny of the North China Craton: link with secular changes in the evolving Earth. Gondwana Research 24, 275–97.Google Scholar
Zhang, Y. B., Wu, F. Y., Wilde, S. A., Zhai, M. G., Lu, X. P. & Sun, D. Y. 2004. Zircon U–Pb ages and tectonic implications of “Early Paleozoic” granitoids at Yanbian, Jilin Province, Northeast China. Island Arc 13, 484505.Google Scholar
Zhang, Y. B., Wu, F. Y., Yang, J. H., Kim, J. N. & Han, R. H. 2016. Petrogenesis and geological implications of Phanerozoic granitoids at northern Korean Peninsula. Acta Petrologica Sinica 32, 3098–122 (in Chinese with English abstract).Google Scholar
Zhang, Q. S. & Yang, Z. S. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House, pp. 218450 (in Chinese with English abstract).Google Scholar
Zhang, Q. S., Yang, Z. S. & Liu, L. D. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House (in Chinese).Google Scholar
Zhang, H. F., Ying, J. F., Tang, Y. J., Li, X. H., Feng, C. & Santosh, M. 2011. Phanerozoic reactivation of the Archean North China Craton through episodic magmatism: evidence from zircon U–Pb geochronology and Hf isotopes from the Liaodong Peninsula. Gondwana Research 19, 446–59.Google Scholar
Zhang, J., Zhao, G. C., Li, S. Z., Sun, M., Liu, S. W., Wilde, S. A., Kroner, A. & Yin, C. Q. 2007. Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen. Journal of Structural Geology 29, 933–49.Google Scholar
Zhang, J., Zhao, G. C., Li, S. Z., Sun, M., Wilde, S. A., Liu, S. W. & Yin, C. Q. 2009. Polyphase deformation of the Fuping Complex, Trans-North China Orogen: structures, SHRIMP U–Pb zircon ages and tectonic implications. Journal of Structural Geology 31, 177–93.Google Scholar
Zhang, J., Zhao, G. C., Shen, W. L., Li, S. Z. & Sun, M. 2015. Aeromagnetic study of the HengShan-Wutai-Fuping region: unraveling a crustal profile of the Paleoproterozoic Trans-North China Orogen. Tectonophysics 662, 208–18.Google Scholar
Zhang, J., Zhao, G. C., Shen, W. L., Li, S. Z., Sun, M., Chan, L. S. & Liu, S. W. 2012. Structural and aeromagnetic studies of the Wutai Complex: implications for the tectonic evolution of the Trans-North China Orogen. Precambrian Research 222–223, 212–29.Google Scholar
Zhang, J., Zhao, G. C., Sun, M., Wilde, S. A., Li, S. Z. & Liu, S. W. 2006. High-pressure mafic granulites in the Trans-North China Orogen: tectonic significance and age. Gondwana Research 9, 349–62.Google Scholar
Zhao, G. C. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: key issues and discussion. Acta Petrologica Sinica 25, 1772–92 (in Chinese with English abstract).Google Scholar
Zhao, G. C., Cawood, P. A., Li, S. Z., Wilde, S. A., Sun, M., Zhang, J., He, Y. H. & Yin, C. Q. 2012. Amalgamation of the North China Craton: key issues and discussion. Precambrian Research 222–223, 5576.Google Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Sun, M. 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–62.Google Scholar
Zhao, G. C., Kröner, A., Wilde, S. A., Sun, M., Li, S. Z., Li, X. P., Zhang, J., Xia, X. P. & He, Y. H. 2007. Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen. Geological Magazine 144, 753–75.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: records in the North China Craton. Gondwana Research 6, 417–34.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2011. Assembly, accretion and breakup of the Columbia Supercontinent: records in the North China Craton revisited. International Geology Review 53, 1331–56.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A., Li, S. Z. & Zhang, J. 2006. Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences 28, 319.Google Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Lu, L. Z. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review 40, 706–21.Google Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and PT path constraints and tectonic evolution. Precambrian Research 107, 4573.Google Scholar
Zhao, G. C., Wilde, S. A., Guo, J., Cawood, P. A., Sun, M. & Li, X. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research 177, 266–76.Google Scholar
Zhao, G. C., Wilde, S. A., Sun, M., Guo, J. H., Kroner, A., Li, S. Z., Li, X. P. & Wu, C. M. 2008a. SHRIMP U–Pb zircon geochronology of the Huai'an Complex: constraints on Late Archean to Paleoproterozoic crustal accretion and collision of the Trans-North China Orogen. American Journal of Science 308, 270303.Google Scholar
Zhao, G. C., Wilde, S. A., Sun, M., Li, S. Z., Li, X. P. & Zhang, J. 2008b. SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research 160, 213–26.Google Scholar
Zhao, G. C. & Zhai, M. G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Research 23 (4), 1207–40.Google Scholar
Zhao, L., Zhang, Y. B., Wu, F. Y., Li, Q. L., Yang, Z. H., Jin, Z. N. & Cui, Y. Z. 2016. Paleoproterozoic high temperature metamorphism and anatexis in the northwestern Korean Peninsula: constraints from petrology and zircon U–Pb geochronology. Acta Petrologica Sinica 32, 3045–69 (in Chinese with English abstract).Google Scholar
Zheng, Y. F., Xiao, W. J. & Zhao, G. C. 2013. Introduction to tectonics of China. Gondwana Research 23, 1189–206.Google Scholar
Zhou, J. B., Wilde, S. A., Zhao, G. C., Zheng, C. Q., Jin, W., Zhang, X. Z. & Cheng, H. 2008. SHRIMP U–Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research 160, 323–40.Google Scholar
Supplementary material: File

Meng supplementary material

Table S1

Download Meng supplementary material(File)
File 526.3 KB
Supplementary material: File

Meng supplementary material

Table S2

Download Meng supplementary material(File)
File 917.5 KB
Supplementary material: File

Meng supplementary material

Table S3

Download Meng supplementary material(File)
File 651.3 KB