Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T03:24:47.073Z Has data issue: false hasContentIssue false

Palaeoenvironmental reconstruction of the Sarmatian (Middle Miocene) Central Paratethys based on palaeontological and geochemical analyses of foraminifera, ostracods, gastropods and rodents

Published online by Cambridge University Press:  14 August 2009

EMŐKE TÓTH*
Affiliation:
HAS-HNHM Research Group for Paleontology, H-1431 Budapest, POB 137, Hungary
ÁGNES GÖRÖG
Affiliation:
Department of Palaeontology, Eötvös University, H-1117 Budapest, Pázmány Péter sétány 1/c, Hungary
CHRISTOPHE LÉCUYER
Affiliation:
UMR 5125 PEPS CNRS; Université Lyon 1, Campus de la Doua, 69622 Villeurbanne cedex, France
PIERRE MOISSETTE
Affiliation:
UMR 5125 PEPS CNRS; Université Lyon 1, Campus de la Doua, 69622 Villeurbanne cedex, France
VINCENT BALTER
Affiliation:
UMR 5570 LST CNRS; Université Lyon 1, Ecole Normale Supérieure de Lyon, 45 Allée d'Italie, 69364 Lyon Cedex 07, France
MIKLÓS MONOSTORI
Affiliation:
Department of Palaeontology, Eötvös University, H-1117 Budapest, Pázmány Péter sétány 1/c, Hungary
*
*Author for correspondence: [email protected]

Abstract

Palaeoenvironmental changes in the upper Middle Miocene Central Paratethys were reconstructed by using qualitative and quantitative palaeontological analyses of foraminifera and ostracods, coupled with trace elemental (Mg/Ca) and stable isotope (δ18O and δ13C) analyses of their carbonate skeletons and of gastropod shells. Mean annual air temperatures were estimated using the oxygen isotope composition of contemporaneous rodent teeth. The studied aquatic fossils come from two boreholes in the Zsámbék Basin (northern central Hungary), while the terrestrial ones are from localities in NE Hungary and E Romania. In the studied Sarmatian successions, three zones could be distinguished, based on palaeontological and geochemical results. At the Badenian/Sarmatian boundary, faunal diversity decreased markedly. In the lower zone a transgressive event culminated in a seawater incursion into the semi-open basin system of the Central Paratethys. Stable bottom-water temperature (~15 °C) and variable salinities (20–32 ‰) are estimated for the Early Sarmatian Sea. The faunal changes (notably a strong reduction in biodiversity) occurring at the boundary between the lower and the middle zone can be explained by a sea-level highstand with dysoxic conditions. A relative sea-level fall is documented at the end of this middle zone. After a short regressive event, a marine connection between the Paratethys and the Mediterranean was established at the beginning of the upper zone. This is indicated by an increased microfaunal diversity and the re-appearance of marine Badenian ostracods and foraminifera, which are completely absent from the older Sarmatian series. During the upper zone, the temperatures and salinities are estimated to have fluctuated from 15 °C to 21 °C and from 15 ‰ to 43 ‰, respectively.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrusov, N. 1902. Die südrussischen Neogenablagerungen. 3-ter Theil. Verhandlungen der Russisch-Kaiserlichen Mineralogischen Gesellschaft zu St. Petersburg 39 (2), 337495.Google Scholar
Boda, J. 1959. A magyarországi szarmata emelet és gerinctelen faunája (Das Sarmat in Ungarn und seine Invertebraten-Fauna). Annales Instituti Geologici Publici Hungarici 47 (3), 567862 (in Hungarian and German).Google Scholar
Boda, J. 1974. A magyarországi szarmata emelet rétegtana (Stratigraphie des Sarmats in Ungarn). Földtani Közlöny 104 (3), 249–60 (in Hungarian, German abstract).Google Scholar
Cernajsek, T. 1972. Zur Palökologie der Ostrakodenfaunen am Westrand des Wiener Beckens. Verhandlungen der Geologischen Bundesanstalt 1972/2, 237–46.Google Scholar
Cornée, J.-J., Moissette, P., Saint Martin, J.-P., Kázmér, M., Tóth, E., Görög, Á., Dulai, A. & Müller, P. 2009. Marine carbonate systems in the Sarmatian of the Central Paratethys: the Zsámbék Basin of Hungary. Sedimentology, doi:10.1111/j.1365-3091.2009.01055.x, in press.CrossRefGoogle Scholar
Crowson, R. A., Showers, W. J., Wright, E. K. & Hoering, T. C. 1991. A method for preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63, 2397–400.CrossRefGoogle Scholar
Dodd, J. R. & Crisp, E. L. 1982. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for palaeosalinity studies. Palaeogeography, Palaeoclimatology, Palaeoecology 38, 4556.CrossRefGoogle Scholar
Eijden, A. J. M. van & Ganssen, G. M. 1995. An Oligocene multi-species foraminiferal oxygen and carbon isotope record from ODP Hole 758A (Indian Ocean): paleoceanographic and paleo-ecologic implications. Marine Micropaleontology 25, 4765.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. 1953. Revised carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America 64, 1315–26.CrossRefGoogle Scholar
Erdei, B., Hably, L., Kázmér, M., Utescher, T. & Bruch, A. A. 2007. Neogene flora and vegetation development in the Pannonian domain in relation to palaeoclimate and palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 253, 131–56.CrossRefGoogle Scholar
Filipescu, S., Popa, M. & Wanek, F. 1999. The significance of some Sarmatian faunas from the southwestern part of the Padurea Craiului Mountains (Romania). Acta Palaeontologica Romaniae 2, 163–9.Google Scholar
Filipescu, S., Silye, L. & Krézsek, Cs. 2005. Sarmatian micropaleontological assemblages and sedimentary paleoenvironments in the southern Transylvanian Basin. Acta Palaeontologica Romaniae 5, 173–9.Google Scholar
Fordinál, K., Zágorsek, K. & Zlinská, A. 2006. Early Sarmatian biota in the northern part of the Danube Basin (Slovakia). Geologica Carpathica 57, 123–30.Google Scholar
Görög, Á. 1992. Sarmatian foraminifera of the Zsámbék Basin, Hungary. Annales Universitatis Scientiarum Budapestinensis, sectio Geologica 29, 31153.Google Scholar
Grafenstein, U. von, Erlenkeuser, H., Müller, J., Trimborn, P. & Alefs, J. 1996. A 200 year middle-European air temperature record preserved in lake sediments: An extension of the δ18Op-air temperature relation into the past. Geochimica et Cosmochimica Acta 60, 4025–36.CrossRefGoogle Scholar
Grill, R. 1941. Stratigraphische Untersuchungen mit Hilfe von Mikrofaunen im Wiener Becken und den benachbarten Molasse-Anteilen. Öl Kohle 37, 595602.Google Scholar
Grossmann, E. L. & Ku, T. L. 1986. Stable oxygen and carbon isotope fractionation in biogenic aragonite: temperature effect. Chemical Geology, Isotope Geoscience Section 59, 5974.CrossRefGoogle Scholar
Haig, D. W. 1988. Miliolids foraminifera from inner neritic sand and mud facies of the Papua lagoon, New Guinea. Journal of Foraminiferal Research 18, 203–36.CrossRefGoogle Scholar
Hajós, M. 1986. A magyarországi miocén diatómás képződmények rétegtana (Stratigraphy of Hungary's Miocene diatomaceous earth deposits). Geologica Hungarica 49, 1339 (in Hungarian and English).Google Scholar
Hámor, G. 1997. Kozárdi Formáció (Kozárd Formation). In Magyarország Litosztratigráfiai Alapegységei (Basic Lithostratigraphic units of Hungary) (ed. Császár, G.), p. 76. Budapest: Geological Institute of Hungary (in Hungarian and English).Google Scholar
Hámor, G. & Ivancsics, J. 1997. Tinnyei Formáció (Tinnye Formation). In Magyarország Litosztratigráfiai Alapegységei (Basic Lithostratigraphic units of Hungary) (ed. Császár, G.), p. 76. Budapest: Geological Institute of Hungary (in Hungarian and English).Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level changes. In Sea-level changes – an integrated approach (eds Wilgus, C. K., Hastings, B. S., Kendall, C. G., Posamentier, H.W., Ross, C. A. & van Wagoner, J. C.), pp. 71108. Society of Economic Paleontologists and Mineralogists, Special Publications no. 42.CrossRefGoogle Scholar
Hartmann, G. 1975. Ostracoda. In Dr. H. G. Bronns Klassen und Ordnungen des Tierreichs. 5. Arthropoda. 1. Crustacea (ed. Gruner, H. E.), 2, 4, 4, pp. 572616. Jena: VEB Gustav Fischer Verlag.Google Scholar
Harzhauser, M. & Kowalke, T. 2002. Sarmatian (Late Middle Miocene) gastropod assemblages of the Central Paratethys. Facies 46, 5782.CrossRefGoogle Scholar
Harzhauser, M. & Piller, W. E. 2004 a. Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy 1, 6586.CrossRefGoogle Scholar
Harzhauser, M. & Piller, W. E. 2004 b. The Early Sarmatian – hidden seesaw changes. Courier Forschungsinstitut Senckenberg 246, 89111.Google Scholar
Harzhauser, M., Piller, W. E. & Latal, C. 2007. Geodynamic impact on the stable isotope signatures in a shallow epicontinental sea. Terra Nova 19, 324–30.CrossRefGoogle Scholar
Hír, J. 2004. The Present Status of the Study on the Middle Miocene Rodent Faunas in the Carpathian Basin. Courier Forschungsinstitut Senckenberg 249, 4552.Google Scholar
Hír, J., Kókay, J., Venczel, M., Gál, E. & Kessler, E. 2001. Előzetes beszámoló a felsőtárkányi „Güdör-kert” n. őslénytani lelőhelykomplex újravizsgálatáról. Folia Historico Naturalia Musei Matraensis 25, 4164 (in Hungarian, English abstract).Google Scholar
Iljina, L. B. 1998. Connections of Eastern Paratethyan paleobasins with Tethyan Seas in the Middle and Late Miocene. Romanian Journal of Stratigraphy 78, 5762.Google Scholar
Jámbor, Á. 1974. Üledékes kéntelep a Zsámbéki-medence szarmata sorozatában (Sedimentary sulfur deposit in the Sarmatian sequence of the Zsámbék Basin (Transdanubia, Hungary)). Magyar Állami Földtani Intézet Évi Jelentése, 301–3 (in Hungarian, English abstract).Google Scholar
Janz, H. & Vennemann, T. W. 2005. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 216–47.CrossRefGoogle Scholar
Jiménez-Moreno, G., Rodríguez, F.-J., Pardo-Igúzquiza, E., Fauquette, S., Suc, J.-P. & Müller, P. 2005. High-resolution palynological analysis in late early–middle Miocene core from the Pannonian Basin, Hungary. Climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 7397.CrossRefGoogle Scholar
Jiřiček, R. 1972. Problém hranice sarmat/panon ve Vídeňské, Podunajské a Východoslovenské pánvi (Das Problem der Grenze Sarmat/Pannon in dem Wiener Becken, dem Donaubecken und dem ostslowakischen Becken). Mineralia Slovaca 4 (14), 3981.Google Scholar
Jiřiček, R. 1974. Biostratigraphische Bedeutung der Ostracoden des Sarmats s. str. In Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, 4 (ed. Brestenská, E.), pp. 434–58. Bratislava: VEDA, Verlag der Slowakischen Akademie der Wissenschaften.Google Scholar
Kocsis, L., Vennemann, T. W., Hegner, E., Fontignie, D. & Tütken, T. 2009. Constraints on Miocene oceanography and climate in the Western and Central Paratethys: records of the O-, Sr-, and Nd-isotope composition of marine fish and mammal remains. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 117–29.CrossRefGoogle Scholar
Kollmann, K. 1958. Cytherideinae und Schulerideinae n. subfam. (Ostracoda) aus dem Neogen des östlichen Österreich. Mitteilungen der Geologischen Gesellschaft in Wien 51, 28195.Google Scholar
Kováč, M., Baráth, I., Harzhauser, M., Hlavatý, I. & Hudáčková, N. 2004. Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Courier Forschungsinstitut Senckenberg 246, 187212.Google Scholar
Krézsek, Cs. & Filipescu, S. 2005. Middle to late Miocene sequence stratigraphy of the Transylvanian Basin (Romania). Tectonophysics 410, 437–63.CrossRefGoogle Scholar
Langer, M. R. 1995. Oxygen and carbon isotopic composition of recent larger and smaller foraminifera from the Madang Lagoon (Papua New Guinea). Marine Micropaleontology 26, 215–21.CrossRefGoogle Scholar
Latal, C., Piller, W. E. & Harzhauser, M. 2004. Palaeoenvironmental reconstructions by stable isotopes of Middle Miocene gastropods of the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 157–69.CrossRefGoogle Scholar
Lécuyer, C., Grandjean, P., O'Neil, J. R., Cappetta, H. & Martineau, F. 1993. Thermal excursions in the ocean at the Cretaceous–Tertiary boundary (northern Morocco): the δ18O record of phosphatic fish debris. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 235–43.CrossRefGoogle Scholar
Lécuyer, C., Grandjean, P., Barrat, J.-A., Nolvak, J., Emig, C., Paris, F. & Robardet, M. 1998. δ18O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochimica et Cosmochimica Acta 62, 2429–36.CrossRefGoogle Scholar
Lécuyer, C., Reynard, B. & Martineau, F. 2004. Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chemical Geology 213, 293305.CrossRefGoogle Scholar
Lubinski, D. J., Polyak, L. & Forman, S. L. 2001. Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes. Quaternary Science Reviews 20, 1851–79.CrossRefGoogle Scholar
Luczkowska, E. 1998. Marine Miocene deposits of the Paratethys in Poland. In Oligocene–Miocene foraminifera of the Central Paratethys (eds Rögl, F., Rupp, C. & Ctyroka, J.), pp. 2834. Abhandlungen der senckenbergischen naturforschenden Gesellschaft no. 549. Frankfurt am Main: Verlag Waldemar Kramer.Google Scholar
Magyar, I., Geary, D. H. & Müller, P. 1999. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 147, 151–67.CrossRefGoogle Scholar
Mátyás, J., Burns, S. J., Müller, P. & Magyar, I. 1996. What can stable isotopes say about salinity? An example from the late Miocene Pannonian Lake. Palaios 11, 31–9.CrossRefGoogle Scholar
Morkhoven, F. P. C. M. 1962. Post-Palaeozoic Ostracoda, Vol. I. Amsterdam, London, New York: Elsevier Publishing Company, 204 pp.Google Scholar
Morkhoven, F. P. C. M. 1963. Post-Palaeozoic Ostracoda, Vol. II. Amsterdam, London, New York: Elsevier Publishing Company, 478 pp.Google Scholar
Murray, J. W. 1991. Ecology and Palaeoecology of Benthic Foraminifera. Essex: Longman Scientific & Technical, 397 pp.Google Scholar
Navarro, N., Lécuyer, C., Montuire, S., Langlois, C. & Martineau, F. 2004. Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura. Quaternary Research 62, 172–82.CrossRefGoogle Scholar
Oertli, H. J. 1971. The aspect of ostracode faunas – A possible new tool in petroleum sedimentology. Bulletin du Centre de Recherche de Pau-SNPA 5, 137–51.Google Scholar
O'Neil, J. R., Roe, L. J., Reinhard, E. & Blake, R. E. 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphates. Israel Journal of Earth Sciences 43, 203–12.Google Scholar
Papp, A. 1956. Fazies und Gliederung des Sarmats im Wiener Becken. Mitteilungen der Geologischen Gesellschaft in Wien 47, 3598.Google Scholar
Papp, A. 1974. Die Entwicklung des Sarmats in Österreich. In Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, 4 (ed. Brestenská, E.), pp. 75–7. Bratislava: VEDA, Verlag der Slowakischen Akademie der Wissenschaften.Google Scholar
Peros, M. C., Reinhardt, E. G., Schwarcz, H. P. & Davis, A. M. 2007. High-resolution paleosalinity reconstruction from Laguna la Leche, north coastal Cuba, using Sr, O and C isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 535–50.CrossRefGoogle Scholar
Piller, W. E. & Harzhauser, M. 2005. The myth of the brackish Sarmatian Sea. Terra Nova 17, 450–5.CrossRefGoogle Scholar
Pisera, A. 1996. Miocene reefs of the Paratethys; a review. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions (eds Franseen, E. K., Esteban, M., Ward, W. C. & Rouchy, J. M.), pp. 97–104. SEPM Concepts in Sedimentology and Paleontology no. 5.Google Scholar
Popescu, G. 1995. Contribution to the knowledge of the Sarmatian foraminifera of Romania. Romanian Journal of Paleontology 76, 8598.Google Scholar
Popov, S. V., Rögl, R., Rozanov, A. Y., Steininger, F. R., Shcherba, I. G. & Kovac, M. 2004. Lithological–Paleogeographic maps of Paratethys. Courier Forschungsinstitut Senckenberg 250, 27–9.Google Scholar
Puri, H. S., Bonaduce, G. & Gervasio, A. M. 1969. Distribution of Ostracoda in the Mediterranean. In The Taxonomy, Morphology and Ecology of Recent Ostracoda (ed. Neale, J. W.), pp. 356412. Edinburgh: Oliver & Boyd.Google Scholar
Rögl, F. 1998 a. The Styrian Basin. In Oligocene–Miocene foraminifera of the Central Parathetys (eds Rögl, F., Rupp, C. & Ctyroka, J.), pp. 4950. Abhandlungen der senckenbergischen naturforschenden Gesellschaft no. 549. Frankfurt am Main: Verlag Waldemar Kramer.Google Scholar
Rögl, F. 1998 b. Palaeogeographic Considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien 99A, 279310.Google Scholar
Rögl, F. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50 (4), 339–49.Google Scholar
Rögl, F. & Steininger, F. F. 1983. Vom Zerfall der Tethys zu Mediterran und Paratethys. Die neogene Paläogeographie und Palinspastik des zirkum-mediterranen Raumes. Annalen des Naturhistorischen Museums in Wien 85A, 135–63.Google Scholar
Rögl, F., Steininger, F. F. & Müller, C. 1978. Middle Miocene salinity crisis and paleogeography of the Paratethys (Middle and Eastern Europe). Initial Reports of the Deep Sea Drilling Project 42 (1), 985–90.Google Scholar
Ruban, D. A. & Tyszka, J. 2005. Diversity dynamics and mass extinctions of the Early–Middle Jurassic foraminifera: A record from the Northwestern Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 329–43.CrossRefGoogle Scholar
Schreilechner, M. G. & Sachsenhofer, R. F. 2007. High resolution sequence stratigraphy in the Eastern Styrian Basin (Miocene, Austria). Austrian Journal of Earth Science 100, 164–84.Google Scholar
Schütz, K., Harzhauser, M., Rögl, F., Ćorić, S. & Galovic, I. 2007. Foraminiferen und Phytoplankton aus dem unteren Sarmatium des südlichen Wiener Beckens (Petronell, Niederösterreich). Jahrbuch der Geologischen Bundesanstalt 147, 449–88.Google Scholar
Schwalb, A., Burns, S. J. & Kelts, K. 1999. Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano Lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 153–68.CrossRefGoogle Scholar
Steininger, F. F. & Wessely, G. 2000. From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene Stratigraphy, Paleogeography and Paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria. Mitteilungen der Österreichischen Geologischen Gesellschaft 92, 95116.Google Scholar
Suess, E. 1866. Untersuchungen über den Charakter der österreichischen Tertiärablagerungen, II. Über die Bedeutung der sogenannten “brackischen Stufe” oder der “Cerithienschichten”. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften 54, 140.Google Scholar
Takesue, R. K. & van Geen, A. 2004. Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochimica et Cosmochimica Acta 68, 3845–61.CrossRefGoogle Scholar
Tóth, E. 2008. Sarmatian (Middle Miocene) ostracod fauna from the Zsámbék Basin, Hungary. Geologica Pannonica 36, 101–51.Google Scholar
Tütken, T., Vennemann, T. W., Janz, H. & Heizmann, H. E. P. 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany, a reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 457–91.CrossRefGoogle Scholar
Vander Putten, E., Dehairs, F., Keppens, E. & Baeyens, W. 2000. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: Environmental and biological controls. Geochimica et Cosmochimica Acta 64, 9971011.CrossRefGoogle Scholar
Vrsaljko, D., Pavelić, D., Miknić, M., Brkić, M., Kováčić, M., Hećimović, I., Hajek-Tadesse, V., Avanić, R. & Kurtanjek, N. 2006. Middle Miocene (Upper Badenian/Sarmatian) palaeoecology and evolution of the environments in the area of Medvednica Mt. (North Croatia). Geologia Croatica 59, 5163.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–93.CrossRefGoogle ScholarPubMed
Zelenka, J. 1990. A review of the Sarmatian Ostracoda of the Vienna Basin. In Ostracoda and Global Events (eds Whatley, R. & Maybury, C.), pp. 263–70. London: British Micropalaeontological Society Publication, Chapman & Hall.CrossRefGoogle Scholar
Supplementary material: PDF

Toth supplementary material

Tables.pdf

Download Toth supplementary material(PDF)
PDF 106.3 KB